ಬೀಜಗಣಿತವು ಚರಾಕ್ಷರ (ಗೊತ್ತಿಲ್ಲದ ಸಂಖ್ಯೆ)ಕ್ಕೆ ಸ್ಥಿರ ಬೆಲೆಯನ್ನು ಕೊಟ್ಟು ವ್ಯವಹರಿಸುವ ಗಣಿತ ಶಾಸ್ತ್ರದ ಒಂದು ಭಾಗವಾಗಿದೆ.ಭಾಸ್ಕರಾಚಾರ್ಯರು ಬೀಜಗಣಿತದ ಮೇಲೆ ಪುಸ್ತಕ ಬರೆದಿದ್ದರೆಂದರೆ ಅದರ ಮಹತ್ವದ ಅರಿವಾಗುತ್ತದೆ.
ಆಸಕ್ತಿಗಾಗಿ ಕೆಳಗಿನ ಗಣಿತ ಸಮಸ್ಯೆಗಳಿಗೆ ಉತ್ತರ ಹೇಳುವಿರಾ?
ಈ ಸಮಸ್ಯೆಗಳನ್ನು ಮುಂದಿನ ಪಾಠ 2.4, 2.8, 2.14, 2.19 ಗಳಲ್ಲಿ ಬಿಡಿಸಲಿದ್ದೇವೆ.
ಬೀಜಗಣಿತದ ಮೂಲ ಕಲ್ಪನೆಗಳು:
ಬದಲಾಗದ ಬೆಲೆಯನ್ನು ಹೊಂದಿರುವ ಸಂಖ್ಯೆಗಳನ್ನು ಸ್ಥಿರಾಂಕ(Constant) ಎನ್ನುವರು. ವಾಸ್ತವಿಕ ಸಂಖ್ಯೆಗಳೆಲ್ಲವೂ ಸ್ಥಿರಾಂಕಗಳು.
ಉದಾ: - 4, 0, 1/3, 5/2, 1.19,
ಸ್ಥಿರ ಬೆಲೆಯನ್ನು ಹೊಂದಿಲ್ಲದೇ ಯಾವುದೇ ಬೆಲೆಯನ್ನು ಪಡೆಯಬಲ್ಲ ಸಂಕೇತವೇ ಚರಾಕ್ಷರ (Variable). ಚರಾಕ್ಷರಗಳನ್ನು ಇಂಗ್ಲಿಷ್ ಅಕ್ಷರಗಳಿಂದ ಸೂಚಿಸುತ್ತೇವೆ. ಉದಾ- x, y, a+b.
ಬೀಜಾಕ್ಷರ ಪದ (Algebraic term) ಯಾವುದೇ ಸಂಖ್ಯೆ, ಬೀಜಸಂಖ್ಯೆ ಅಥವಾ ಸಂಖ್ಯೆ ಮತ್ತು ಚರಾಕ್ಷರಗಳ ಗುಣಲಬ್ಧ ಅಥವಾ ಭಾಗಲಬ್ಧವನ್ನು ಬೀಜಾಕ್ಷರ ಪದ ಎನ್ನುವರು. ಉದಾ- 4ab, 2x, 3y, 10, z, m/n, -p/q…
ಈಗ ಒಂದು ಪದವನ್ನು ಗಮನಿಸೋಣ:2x= 2*x ಇದು 2 ಮತ್ತು x ಗಳ ಗುಣಲಬ್ಧ. ‘2’ ನ್ನು2x ನ ಸಂಖ್ಯಾ ಸಹಗುಣಕ (numerical co-efficient) ಎನ್ನುವರು. ‘x’ ನ್ನು ಬೀಜಸಂಖ್ಯೆ, ಬೀಜಸಹಗುಣಕ ಅಥವಾ ಚರಾಕ್ಷರ (literal factor or literal co-efficient ಎನ್ನುವರು.
ಒಂದೇ ಬೀಜಸಂಖ್ಯೆಯ ಅಪವರ್ತನಗಳನ್ನು ಹೊಂದಿರುವ ಮತ್ತು ಒಂದೇ ಘಾತಗಳನ್ನು ಪಡೆದಿರುವ ಪದಗಳನ್ನು ಸಜಾತಿ ಪದ (like terms) ಗಳೆನ್ನುವರು.
ಉದಾ:
(x, 2x, -7x) ---> ಇಲ್ಲಿ ಚರಾಕ್ಷರ x ಮಾತ್ರ
(2mn, 5mn, -1/3mn) ---> ಇಲ್ಲಿ ಬೀಜ ಸಹಗುಣಕ: mn
(x3, 5 x3, -5/6 x3) ---> ಇಲ್ಲಿ x3 ಎಂಬುದು ಬೀಜಸಹಗುಣಕ. ಈ ಮೂರೂ ಪದಗಳಲ್ಲಿ ಚರಾಕ್ಷರದ ಘಾತ 3.
ಬೇರೆ ಬೇರೆ ಬೀಜ ಸಂಖ್ಯೆಯ ಅಪವರ್ತನಗಳು ಮತ್ತು ಬೇರೆ ಬೇರೆ ಘಾತಗಳಿರುವ ಪದಗಳನ್ನು ವಿಜಾತಿ ಪದ (unlike terms) ಗಳೆಂದು ಕರೆಯುತ್ತೇವೆ.
ಉದಾ:
(x, x3, x2) ---> [ಇಲ್ಲಿ ಚರಾಕ್ಷರ ಒಂದೇ ಆದರೂ ಘಾತ ಸೂಚಿಗಳು ಬೇರೆ ಬೇರೆ (1, 3, 2)]
(2x, 2a,-2mn) ---> (ಇಲ್ಲಿ ಚರಾಕ್ಷರಗಳು ಬೇರೆ ಬೇರೆ x, a, mn)
ಬೀಜೋಕ್ತಿ(Algebraic expression) : ಒಂದು ಅಥವಾ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಪದಗಳು + ಅಥವಾ – ಚಿಹ್ನೆಗಳಿಂದ ಸಹಯೋಗವಾಗಿದ್ದರೆ, ಅವನ್ನು ಬೀಜೋಕ್ತಿಗಳೆನ್ನುವರು
ಉದಾ: 4x+ax3+9x2+ (2a/3b), -2mn+45+ y-2+ +
ಬಹುಪದಗಳು (polynomial) : ಧನಾತ್ಮಕವಾದ ಪೂರ್ಣಾಂಕ ಘಾತಗಳನ್ನು ಹೊಂದಿರುವ ಚರಾಕ್ಷರಗಳನ್ನೊಳಗೊಂಡ ಬೀಜಾಕ್ಷರಪದಗಳನ್ನು ಬಹುಪದಗಳೆನ್ನುವರು.
ಉದಾ: 4x+ax3+9x2+ (2a/3b), -2mn+45
ವಿ.ಸೂ:y-2+ x3/2 ಇದು ಬಹುಪದವಲ್ಲ. ಏಕೆಂದರೆ yಯ ಘಾತ:– 2, x ನ ಘಾತಾಂಕ 3/2 – ಈ ಎರಡೂ ಘಾತಾಂಕಗಳು ಧನ ಪೂರ್ಣಾಂಕಗಳಲ್ಲ..
|
ಬೀಜೋಕ್ತ್ತಿಯ ವಿಧಗಳು |
ಉದಾಹರಣೆಗಳು |
ಒಂದು ಬೀಜೋಕ್ತ್ತಿಯು |
ಒಂದು ಪದವನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ಏಕಪದ |
3a, 2x,-1/3y, |
ಒಂದು ಬೀಜೋಕ್ತಿಯು |
ಎರಡು ಪದಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ದ್ವಿಪದ |
3-4a, 5x2-z |
ಒಂದು ಬೀಜೋಕ್ತ್ತಿಯು |
ಮೂರು ಪದಗಳನ್ನು ಹೊಂದಿದ್ದರೆ ಅದು ತ್ರಿಪದ |
4x+ax3+9x2 |
ಚರಾಕ್ಷರಗಳ ಘಾತಗಳು ಏರಿಕೆಯ ಅಥವಾ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿ ಬರೆದ ಬಹು ಪದಗಳು ಆದರ್ಶ (standard form) ರೂಪದಲ್ಲಿರುವುವು.
ಉದಾ:
y2-2y4+3y-y3+4 - ಇದು ಆದರ್ಶರೂಪದಲ್ಲಿಲ್ಲ.
ಮೇಲಿನ ಬಹುಪದವನ್ನು ಆದರ್ಶರೂಪದಲ್ಲಿ ಹೀಗೆ ಬರೆಯಬಹುದು:
-2y4-y3+ y2+3y+4 ಅಥವಾ 4+3y+ y2-y3-2y4.
ಒಂದು ಬಹುಪದದಲ್ಲಿ 'n’ ಚರಾಕ್ಷರಗಳಿದ್ದರೆ, ಅದನ್ನ n- ಚರಾಕ್ಷರದ ಬಹುಪದ (polynomial in ‘n’ variables) ಎನ್ನುವರು.
ಉದಾ:
ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಚರಾಕ್ಷರ ಇರುವ ಬಹುಪದಗಳಲ್ಲಿ ಚರಾಕ್ಷರಗಳ ಘಾತಗಳ ಮೊತ್ತವನ್ನು ಪ್ರತಿಪದಕ್ಕೂ ತೆಗೆದುಕೊಳ್ಳುವುದು. ಅತಿಹೆಚ್ಚು ಮೊತ್ತವು ಆ ಬಹುಪದದ ಘಾತವನ್ನು (degree of the polynomial) ಸೂಚಿಸುತ್ತದೆ.
ಉದಾ:
ಪೂರ್ಣಾಂಕಗಳಿಗೆ ಅನ್ವಯವಾಗುವ ಎಲ್ಲಾ ನಿಯಮಗಳು ಚಿಹ್ನೆಗಳನ್ನೊಳಗೊಂಡ ಬೀಜ ಸಂಖ್ಯೆಗಳ ಕ್ರಿಯೆಗಳಿಗೂ ಅನ್ವಯವಾಗುವುದು.
ಉದಾ:
5 – (-6) = 5+6 =11, -2 – (+5) = -2-5 =-7. ಇತ್ಯಾದಿ
ಅದೇರೀತಿ : (a+b)+c =a+(b+c) …….
ಬೀಜಪದಗಳ ಸಂಕಲನದಲ್ಲಿ ಸಜಾತಿ ಪದಗಳ ಸಂಖ್ಯಾ ಸಹಗುಣಕಗಳನ್ನು ಕೂಡಿಸಬೇಕು.
ಉದಾ:
ವಿಜಾತಿ ಪದಗಳನ್ನು ಸಂಕಲನ ಮಾಡಲಾಗುವುದಿಲ್ಲ.
ಉದಾ:8y4 -2y2 ಇದನ್ನು ಮತ್ತೆ ಸಂಕ್ಷೇಪಿಸಲಾಗುವುದಿಲ್ಲ.
ಪರಿಹಾರ:
(5a2-6a+3)+ (2a2+3a-1) + (3a2-a-5)
=5a2-6a+3+2a2+3a-1+3a2-a-5
= (5a2+2a2 +3a2) + (-6a+3a-a) + (3-1-5) (ಸಜಾತಿ ಪದಗಳನ್ನು ಒಟ್ಟಿಗೆ ಬರೆಯಿರಿ.)
= (5+2+3) a2 + (-6+3-1)a + (3-1-5) (ಸಜಾತಿ ಪದಗಳ ಸಂಖ್ಯಾ ಸಹಗುಣಕಗಳನ್ನು ಕೂಡಿಸಿದೆ.)=10 a2 + (-4a)-3
=10a2 -4a-3
ಪರಿಹಾರ:
(x3+5x2-4x+6) – (2x3-x2+4x-6)
= x3+5x2-4x+6 - 2x3 -(-x2) -(+4x) –(-6)
=x3+5x2-4x+6 - 2x3+x2-4x+6 ( -(- x2) = x2 ಮತ್ತು–(-6) =+6 )
= (x3 - 2x3)+(5x2+x2)+(-4x -4x) +(6+6) (ಸಜಾತಿ ಪದಗಳನ್ನು ಒಟ್ಟಿಗೆ ಸೇರಿಸಿದೆ.)
= - x3+6x2-8x +12
ಪರಿಹಾರ:
ಈ ಸಮಸ್ಯೆಯು 9 ರಿಂದ 3 ನ್ನು ಪಡೆಯಲು ಎಷ್ಟನ್ನು ಕಳೆಯಬೇಕು ಎಂದಂತೆಯೇ. ಇದಕ್ಕೆ ಉತ್ತರ 6. 9 ರಿಂದ 3 ನ್ನು ಕಳೆದಾಗ ಸಿಕ್ಕಿತು. ಅದೇರೀತಿ ನಾವೀಗ ಕಂಡುಹಿಡಿಯಬೇಕಾದದ್ದು:
ಕಂಡುಹಿಡಿಯಬೇಕಾದದ್ದು:
(x3+2x2-3x+7) – (x3+x2+x -1)
= x3+2x2-3x+7 – x3-x2-x –(-1)
= (x3– x3)+(2x2-x2)+(-3x –x) +(7+1) ( –(-1) =+1)
= 0+x2-4x+8
= x2-4x+8
ತಾಳೆ:
(x3+x2+x -1) + (x2-4x+8)
= x3+(x2 + x2) +(x-4x) -1+8 (ಸಜಾತೀಯ ಪದಗಳನ್ನು ಒಟ್ಟಿಗೆ ಬರೆದಾಗ)
= x3+2x2-3x -7 (ಇದೇ ದತ್ತಾಂಶ)
ಸಂಖ್ಯೆ |
ಕಲಿತ ಮುಖ್ಯಾಂಶಗಳು |
1 |
ಸ್ಥಿರಾಂಕ, ಚರಾಕ್ಷರಗಳು, ಘಾತ, ಏಕಪದ, ದ್ವಿಪದ, ತ್ರಿಪದ, ಬಹುಪದ - ಇವುಗಳ ವ್ಯಾಖ್ಯೆಗಳು. |
ಒಂದು ಕೋಟಿಯಲ್ಲಿ 1 ರ ಮುಂದೆ ಎಷ್ಟು 0 ಗಳಿವೆ?
ರಾಮಾಯಣದ ಯುದ್ಧ ಕಾಂಡದಲ್ಲಿನ ಈ ಶ್ಲೋಕಗಳನ್ನು ಗಮನಿಸಿ:
ಶತಂ ಶತಸಹಸ್ರಾಣಾಂ ಕೋಟಿ ಮಾಹುರ್ಮನೀಷಣ |1|
ಅರ್ಥ: 100*100*1000 = ಕೋಟಿ
ಶತಂ ಕೋಟಿಸಹಸ್ರಾಣಾಂ ಶಂಖ ಇತ್ಯಭಿಧೀಯತೇ ||2||
ಅರ್ಥ: 100* ಕೋಟಿ *1000 = ಶಂಖ
ಶಂಖದಲ್ಲಿ 1 ರ ಮುಂದೆ ಎಷ್ಟು 0 ಗಳಿವೆ?
ಶತಂ ಶಂಖ ಸಹಸ್ರಾಣಾಂ ಮಹಾಶಂಖ ಇತಿಸ್ಮೃತ:|3|
ಅರ್ಥ: 100* ಶಂಖ * 1000 = ಮಹಾಶಂಖ
ರಾಮಾಯಣದ ಕಾಲ ಅತಿ ಕಡಿಮೆ ಎಂದರೆ ಕ್ರಿ. ಪೂ 4000 ಆಗಿದ್ದು, ಆಗಿನ ಕಾಲದಲ್ಲೆ ಸೊನ್ನೆ ಮತ್ತು ದಶಮಾಂಶ ಪದ್ಧತಿಯು ಬಳಕೆಯಲ್ಲಿ ಇತ್ತು ಎಂದು ಇದರಿಂದ ತಿಳಿದು ಬರುತ್ತದೆ.
ಮೇಲೆ ತಿಳಿಸಿದಂತಹ ಡೊಡ್ಡ ಸಂಖ್ಯೆಗಳನ್ನು ಸುಲಭವಾಗಿ ನೆನಪಿನಲ್ಲಿ ಇಟ್ಟುಕೊಳ್ಳುವುದು ಮತ್ತು ಗುಣಿಸುವುದು ಹೇಗೆ ಎಂದು ಇಲ್ಲಿ ಕಲಿಯಲಿದ್ದೇವೆ.
16 = 2*2*2*2 (ಸಂಖ್ಯೆ 2ನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿದೆ.)
ಆದ್ದರಿಂದ 16 – ಇದನ್ನು 2ರ 4ನೇ ಘಾತ ಎನ್ನುವರು
16 = 24.
2ನ್ನು 4ನೆ ಘಾತಕ್ಕೆ ಏರಿಸಿದಾಗ 16 ದೊರೆಯುವುದು
16= 4*4 = 42 (4 ರ ಘಾತ 2 = 16)
ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳನ್ನು ಅಪವರ್ತಿಸಿದ ಹಾಗೆಯೇ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸಬಹುದು.
ಉದಾ:
x3= x*x*x
x3 ನ್ನು xನ 3 ನೇ ಘಾತ ಎನ್ನುವರು.
ಈ ರೀತಿ x*x*x ನ್ನು x3 ರಿಂದ ಸೂಚಿಸುವ ಈ ಕ್ರಮವನ್ನು ‘ಘಾತಾಂಕದ ಸಂಕೇತದಿಂದ ಸೂಚಿಸುವಿಕೆ’ ( ‘exponential notation’ ) ಎನ್ನುವರು.
ಸಾಮಾನ್ಯವಾಗಿ:
xn = x *x*x* …. n ಬಾರಿ
ಇಲ್ಲಿ x ನ್ನು ‘ಆಧಾರ ಸಂಖ್ಯೆ’ (base) ಮತ್ತು n ನ್ನು ‘ಘಾತ ಸೂಚಿ’ (exponent Or ‘index’) ಎಂತಲೂ ಕರೆಯುತ್ತಾರೆ.
(ಆಧಾರಸಂಖ್ಯೆ) ಘಾತಾಂಕ = ಸಂಖ್ಯೆ
(Base) Exponent = Number
ಗಮನಿಸಿ:a = a1
ಸಮಸ್ಯೆ1: 1331 ನ್ನು11 ರ ಆಧಾರದಲ್ಲಿ ಬರೆಯಿರಿ.
ಪರಿಹಾರ:
1331 ರ ಅಪವರ್ತನೆಗಳು = 11, 11, 11
1331 = 11*11*11 = 113
ಈಗ ನಾವು 25 ಮತ್ತು 23 ಗಳ ಗುಣಲಬ್ಧ ನೋಡುವಾ
25 *23 = (2*2*2*2*2)*(2*2*2) = 28
ಇಲ್ಲಿ ಗಮನಿಸಿ: 8 =5+3
x ಒಂದು ವಾಸ್ತವ ಸಂಖ್ಯೆಯಾಗಿದ್ದು x 0 ಮತ್ತು m, n ಗಳು ಯಾವುದೇ ಸಂಖ್ಯೆಗಳಾಗಿದ್ದರೆ,,
xm *xn = x(m+n)
ಪರಿಹಾರ
a14 *b32 * a4 *b16
= (a14 * a4 )*(b32 * b16) ( ಪದಗಳನ್ನು ವ್ಯವಸ್ಥೆಗೊಳಿಸಿದೆ.)
= (a14+4)*(b32+16) (ಮೊದಲ ನಿಯಮ.)
=a18 *b48
ಈಗ ನಾವು 25 ನ್ನ 23 ದಿಂದ ಭಾಗಿಸುವಾ.
25 /23 = (2*2*2*2*2)/(2*2*2) = 2*2=22
ಅದೇ ರೀತಿ, 23 /25 = (2*2*2)/ (2*2*2*2*2) = 1/(2*2) = 1/(22)
23 /23 = (2*2*2)/(2*2*2) = 1
x ಒಂದು ವಾಸ್ತವ ಸಂಖ್ಯೆಯಾಗಿದ್ದು x 0 , m ಮತ್ತು n ಗಳು ಯಾವುದೇ ಸಂಖ್ಯೆಗಳಾಗಿದ್ದು m>n
ಆದಾಗ, xm /xn = 1/x(m-n)
x ಒಂದು ವಾಸ್ತವ ಸಂಖ್ಯೆಯಾಗಿದ್ದು x 0 ,m ಮತ್ತು n ಗಳು ಯಾವುದೇ ಸಂಖ್ಯೆಗಳಾಗಿದ್ದು m<n
ಆದಾಗ, xm /xn = 1/(x(n-m) )
ವ್ಯಾಖ್ಯೆಯಂತೆ, x 0 ಆದಾಗ,
ಗಮನಿಸಿ:
x0 =1 ( 1 = xm /xm = x(m-m) )
ಸಮಸ್ಯೆ3:10-5 ಮತ್ತು 2/m-1 ಗಳನ್ನು ಧನ ಘಾತಾಂಕರೂಪದಲ್ಲಿ ಬರೆ.
ಪರಿಹಾರ:
10-5 = 1/105
2/m-1= 2/(1/m1) = 2m1 =2m
ಪರಿಹಾರ:
xa+b /xb-c
= xa+b /1/(x-(b-c))
= xa+b *x-(b-c)
= xa+b+(-(b-c)) (2ನೇ ನಿಯಮ)
= xa+b-b+c( -(b-c) = -b+c)
= xa+c
ಈಗ 52 , 52 ಮತ್ತು 52 ಗಳ ಗುಣಲಬ್ಧ ಕಂಡುಹಿಡಿಯುವಾ.
52 *52*52= (5*5)*(5*5)*(5*5) = 56
ಇದನ್ನು ಈ ರೀತಿಯಾಗಿಯೂ ಬರೆಯಬಹುದು.
52 *52*52 = (52)3 = 52*3
x ಎಂಬುದು ಸೊನ್ನೆಯಲ್ಲದ ವಾಸ್ತವ ಸಂಖ್ಯೆಯಾಗಿದ್ದು m ಮತ್ತು n ಗಳು ಸಂಖ್ಯೆಗಳಾಗಿದ್ದರೆ,
(xm )n = xmn
ಪರಿಹಾರ:
(x2)2= x4
{(x2)2}2 = {x4}2 = x8
[{(x2)2}2]2 = [x8]2= x16
ಅಭ್ಯಾಸ : ಪ್ರತಿ ಪದವನ್ನು ವಿಸ್ತರಿಸಿ ತಾಳೆನೋಡಿ
ಈಗ, (2*5)3 ಇದನ್ನು ವಿಸ್ತರಿಸುವಾ:
(2*5)3 = (2*5)*(2*5)*(2*5) ವ್ಯಾಖ್ಯೆಯಂತೆ.
= (2*2*2)*(5*5*5)
= (2)3*(5)3
x ಮತ್ತು y ಗಳು ಸೊನ್ನೆಯಲ್ಲದ ವಾಸ್ತವ ಸಂಖ್ಯೆಗಳಾದಾಗ,ಮತ್ತು m ಯಾವುದೇ ಸಂಖ್ಯೆಯಾದಾಗ,
(x*y)m = (xm)* (ym)
ಪರಿಹಾರ:
(5x-3 y-2)3
= (5)3 *(x-3)3*(y-2)3 ( 4 ನೇ ನಿಯಮ)
= 53* x-9* y-6 (3 ನೇ ನಿಯಮ)
= 53/( x9* y6) (ವ್ಯಾಖ್ಯೆಯಿಂದ)
ಅಭ್ಯಾಸ : ಪ್ರತಿ ಪದವನ್ನು ವಿಸ್ತರಿಸಿ ತಾಳೆನೋಡಿ
ಪರಿಹಾರ:
(3x-2 y)-1
= (3) -1*( x-2)-1 *(y)-1 --à( 4 ನೇ ನಿಯಮ)
= (3) -1* x+2 *y-1 ----à (3 ನೇ ನಿಯಮ)
= x2 /3*y--à (ವ್ಯಾಖ್ಯೆಯಿಂದ)
ಪ್ರತಿ ಪದವನ್ನು ವಿಸ್ತರಿಸಿ ತಾಳೆನೋಡಿ
ಈಗ (2*5)3 ನ್ನು ವಿಸ್ತರಿಸುವಾ:
(2/5)3 = (2/5)*(2/5)*(2/5)
= (2*2*2)/(5*5*5)
= (2)3/(5)3
x ಮತ್ತು y ಗಳು ಸೊನ್ನೆಯಲ್ಲದ ವಾಸ್ತವ ಸಂಖ್ಯೆಗಳಾದಾಗ, m ಒಂದು ಸಂಖ್ಯೆಯಾದಾಗ,
(x/y)m = (xm)/ (ym)
ಗಮನಿಸಿ:
(-1)2 = (-1)*(-1) =+1 and (-1)3 = (-1)*(-1)*(-1) = -1
ಸಾಧನೆ:
(-1)m = (-1)2n = ((-1)2 )n ----à3 ನೇ ನಿಯಮ
= 1n = 1
2. m ಒಂದು ಬೆಸ ಸಂಖ್ಯೆಯಾದಾಗ ಅದರ ರೂಪ 2n+1 ರೀತಿಯಲ್ಲಿ ಇರುತ್ತದೆ (n= 0,1,2.3 . . .)
(-1)m = (-1)2n+1 = (-1)2n *(-1)1 ----à 2 ನೇ ನಿಯಮ
= 1n *-1 ----à (ಹಿಂದಿನ ಹಂತದಲ್ಲಿ ಸಾಧಿಸಿದೆ)
= -1
ಪರಿಹಾರ:
(am/an)p
= (am)p/(an)p (5ನೇ ನಿಯಮ)
= amp/ anp (3ನೇ ನಿಯಮ)
(am/an)p*(an/ap)m*(ap/am)n
= (amp/ anp)* (anm/ apm)* (apn/ amn)
= (amp* anm* apn)/ (anp*apm*amn) (ಅಂಶ, ಛೇದಗಳೆರಡೂ ಒಂದೇ)
=1
ಪರಿಹಾರ:
ಮೊದಲು ಆವರಣದ ಒಳಗಿರುವ ಭಾಗವನ್ನು ಸಂಕ್ಷೇಪಿಸಿದಾಗ,
(a4b-5/ a2b-4)
= (a4/ a2) * (b-5/ b-4)
= (a2/ b) ( (2 ನೇ ನಿಯಮ)- (a4/ a2) = (a4-2) = a2, (b-5/ b-4) = (b-5-(-4)) = b-5+4= b-1= 1/b )
ಈಗ ಕೊಟ್ಟ ಸಮಸ್ಯೆ ನೋಡುವಾ
(a4b-5/ a2b-4)-3
= (a2/ b)-3
= (a2/ b)-3
= (a2)-3/ (b)-3 (3ನೇ ನಿಯಮ)
=a-6/b-3
= b3/a6
ಪರ್ಯಾಯ ವಿಧಾನ
(a4b-5/ a2b-4)-3
= (a-12b+15/ a-6b+12) (3ನೇ ನಿಯಮ)
=(a-12/ a-6)* (b15/ b12) (ಪದಗಳನ್ನು ಜೋಡಿಸಿದಾಗ)
=(a-12* a6)* (b15* b- 12) (ಸೂತ್ರ x -m = 1/( xm) )
=(a-12+6)* (b15-12) (ಮೊದಲ ನಿಯಮ)
=a-6*b3
= b3/a6
ಸಂಖ್ಯೆ |
ಕಲಿತಮುಖ್ಯಾಂಶಗಳು |
1 |
ವ್ಯಾಖ್ಯೆಯಂತೆ, xn = x*x*x*x – n ಬಾರಿ |
2 |
(ಆಧಾರಸಂಖ್ಯೆ) ಘಾತಾಂಕ = ಸಂಖ್ಯೆ |
3 |
ವ್ಯಾಖ್ಯೆಯಂತೆ, x0 =1 |
4 |
ವ್ಯಾಖ್ಯೆಯಂತೆ, x - m = 1/( xm) |
5 |
ಮೊದಲ ನಿಯಮ:xm *xn = x(m+n) |
6 |
2 ನೇ ನಿಯಮ xm /xn = x(m-n) |
7 |
3 ನೇ ನಿಯಮ (xm )n = xmn |
8 |
4 ನೇ ನಿಯಮ (x*y)m = (xm)* (ym) |
9 |
5 ನೇ ನಿಯಮ (x/y)m = (xm)/ (ym) |
ಪರಿಹಾರ:
1960 = 2*2*2*5*7*7= 235172
a=3, b=1 , c=2
2-a =1/8 and 5-c =1/25
2-a7b5-c
= (1/8)*7*(1/25) = 7/200
ಪರಿಹಾರ:
ಈಗ:
8x3=(2x)3 and 125y3=(5y)3
(8x3)/125y3
=(2x/5y)3
{(8x3)/125y3}2/3
={(2x/5y)3}2/3
=(2x/5y)3*2/3
=(2x/5y)2
= 4x2/25y2
ಪರಿಹಾರ:
9 = 32
9*34= 32*34=36
ಈಗ
3x-1 = 9*34 =36,
x-1 = 6
x=7
ತಾಳೆ:
x ನ ಬೆಲೆಯನ್ನು(=7)ದತ್ತ ಸಮಸ್ಯೆಯಲ್ಲಿ ಆದೇಶಿಸಿ, ವಿಸ್ತರಿಸಿ ಉತ್ತರವನ್ನು ತಾಳೆನೋಡಿ (= 729
ಸಂಕಲನ ಮತ್ತು ವ್ಯವಕಲನಗಳಲ್ಲಿ, ಸಂಖ್ಯೆಗಳಲ್ಲಿ ಮತ್ತು ಬೀಜೋಕ್ತಿಗಳಲ್ಲಿ ಅನುಸರಿಸುವ ನಿಯಮಗಳನ್ನೇ ಬೀಜೋಕ್ತಿಗಳ ಗುಣಾಕಾರದಲ್ಲೂ ಉಪಯೋಗಿಸುತ್ತೇವೆ. (ಪರಿವರ್ತನ ಮತ್ತು ಸಹವರ್ತನ ನಿಯಮಗಳು)
ಪರಿಹಾರ:
(1/10)*(x5y2) * 10x3y
=(1/10)*10 *(x5y2) *x3y ( ಸಂಖ್ಯಾ ಸಹಗುಣಕ ಮತ್ತು ಚರಾಕ್ಷರಗಳನ್ನು ಒಟ್ಟಿಗೆ ಬರೆದಾಗ)
= 1*(x5 *x3) * y2y
= (x5+3 ) * y2+1
= x8 y3
ಪರಿಹಾರ:
ಮೊದಲು ಮೊದಲನೇ ಎರಡು ಪದಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳುವಾ:
-3x2y* 4xy2z
= (-3*4) (x2*x) (y*y2)z ( ಸಂಖ್ಯಾ ಸಹಗುಣಕ ಮತ್ತು ಚರಾಕ್ಷರಗಳನ್ನು ಒಟ್ಟಿಗೆ ಬರೆದಾಗ)
= -12 x3 y3z (ಘಾತಾಂಕಗಳ ಮೊದಲನೇ ನಿಯಮದ ಪ್ರಕಾರ)
ಈಗ ಎಲ್ಲಾ ಮೂರು ಪದಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳುವಾ:
(-3x2y* 4xy2z) * (5/4)z
= -12 x3 y3z* (5/4)z
= (-12)*(5/4) x3 y3z*z
= -15 x3 y3 z2
24 = 2*12 = 2*(8+4) = 2*8+2*4 = 16+8: ಇದೇರೀತಿ.
a*(b +c) = a*b + a*c = ab+ac ( ವಿಭಾಜಕ ನಿಯಮ)
ಒಂದು ಏಕಪದ ಮತ್ತು ಒಂದು ದ್ವಿಪದ - ಇವೆರಡನ್ನು ಗುಣಿಸುವಾಗ, ದ್ವಿಪದದ ಪ್ರತೀ ಪದವನ್ನು ಏಕಪದದಿಂದ ಗುಣಿಸಿ, ಸಂಕ್ಷೇಪಿಸಬೇಕು..
ಪರಿಹಾರ:
-2pq *(-11p2q-q2)
= (-11p2q)* (-2pq) -(q2)* (-2pq) (ಪ್ರತೀಪದವನ್ನು -11p2q-q2 ದಿಂದ ಗುಣಿಸಿದಾಗ)
= (-11)*(-2)p2*p*q*q -(1*-2)*p*q2* q
= 22p3q2+2pq3
ಈಗ ನಾವು 12 ನ್ನ 8 ರಿಂದ ಗುಣಿಸುವಾ 12*8 = 96
ಇದನ್ನು ನಾವು ಬೇರೆ ಕ್ರಮದಲ್ಲಿ ಮಾಡುವಾ 12 = 8+4 and 8= 6+2
12*8
= (8+4)*(6+2)
= 8*(6+2) + 4*(6+2)
= (8*6+8*2)+ (4*6 +4*2)
= 48+16+24+8 = 96
ಇದೇರೀತಿ
(a+b)*(c+d) = a*(c+d)+b*(c+d)
= ac+ad+bc+bd
ಸಾಮಾನ್ಯವಾಗಿ ಹೇಳುವುದಾದರೆ, ಎರಡು ದ್ವಿಪದಗಳನ್ನು ಗುಣಿಸುವಾಗ ಒಂದು ದ್ವಿಪದದ ಪ್ರತೀಯೊಂದು ಪದದಿಂದಲ್ಲೂ 2ನೇ ದ್ವಿಪದದ ಪ್ರತಿಯೊಂದು ಪದವನ್ನು ಗುಣಿಸಿ, ಸಂಕ್ಷೇಪಿಸಬೇಕು.ಪ್ರತೀಪದಗಳ ಗುಣಾಕಾರದಲ್ಲೂ ನಾವು ಇದೇ ಕ್ರಮವನ್ನು ಅನುಸರಿಸುತ್ತೇವೆ.
ಪರಿಹಾರ:
(x-3)* (2x2-3x +1)
= x*(2x2-3x +1) -3*(2x2-3x +1) (ಮೊದಲನೆ ದ್ವಿಪದದ ಪ್ರತೀ ಪದವನ್ನು 2ನೇ ತ್ರಿಪದದ ಪ್ರತಿ ಪದದಿಂದ ಗುಣಿಸಿದಾಗ)
= (2x2*x-3x*x +1*x)+( -3*2x2-3*-3x -3*1) (ಸಂಕ್ಷೇಪಿಸಿದಾಗ)
= (2x3-3x2+x) + (- 6 x2+9x-3)
=2x3 -3x2- 6 x2+x +9x -3 (ಸಜಾತಿಯ ಪದಗಳನ್ನು ಒಟ್ಟಿಗೆ ಬರೆದಾಗ)=2x3 -9x2+10x -3
ಚರಾಕ್ಷರಗಳ ಎಲ್ಲಾ ಬೆಲೆಗಳಿಗೆ ವಾಸ್ತವವಾಗಿರುವ ಸಮೀಕರಣಗಳನ್ನು ನಿತ್ಯ ಸಮಿಕರಣಗಳೆನ್ನುವರು. ಈಗ ಚರಾಕ್ಷರಗಳಾದ a,b,c ಅಥವಾ x ಗಳ ಎಲ್ಲಾ ಬೆಲೆಗಳಿಗೆ ವಾಸ್ತವವಾಗಿರುವ ಕೆಲವು ನಿತ್ಯಸಮಿಕರಣಗಳನ್ನು ನೋಡುವಾ:
ಕೆಳಗಿನವುಗಳನ್ನು ನಾವು ಕಲಿತಿದ್ದೇವೆ.
(a+b)*(c+d) = a*(c+d)+b*(c+d)
= ac+ad+bc+bd ------------------->(1)
ಮೇಲಿನ ಸಮೀಕರಣದಲ್ಲಿ a ಯನ್ನು x , c ಯನ್ನು x, b ಯನ್ನು a ಮತ್ತು d ಯನ್ನು b ದಿಂದ ಬದಲಾಯಿಸಿದಾಗ (x+a)*(x+b)
= x*x+ xb+ax+ab
= x2+xa+xb+ab
= x2+x(a+b)+ab
ಪರಿಹಾರ:
102 = 100+2
106 = 100+6
102*106
= (100+2)*(100+6) [ಸೂತ್ರ (x+a)*(x+b)]
= 1002+ 100*(2+6)+ 2*6
= 10000+800+12 = 10812
ಪರಿಹಾರ:
97 =100-3
95 =100-5
(x+a)*(x+b) = x2+x(a+b)+ab ಸಮೀಕರಣದಲ್ಲಿ
x=100, a=-3 and b=-5.
97*95
= (100-3)*(100-5)
= 1002+ 100*(-3+-5)+ (-3*-5)
= 10000-800+15 = 9215
ಪರಿಹಾರ:
103 = 100+3
96 = 100-4
(x+a)*(x+b) = x2+x(a+b)+ab ಸಮೀಕರಣ
x=100, a=+3 ಮತ್ತು b=-4.
103*96
= (100+3)*(100-4)
= 1002+ 100*(3+-4)+ (3*-4)
= 10000-100-12 = 9888
ಸಮೀಕರಣ (1) ರಲ್ಲಿ c ಯನ್ನು a, ಮತ್ತು d ಯನ್ನುb ನಿಂದ ಬದಲಾಯಿಸಿದಾಗ
( i.e. (a+b)*(c+d) = ac+ad+bc+bd )
ಈಗ,
(a+b)*(a+b) = aa+ab+ba+bb
= a2+ 2ab+b2
(a+b)2= a2+ 2ab+b2
ಪರಿಹಾರ:
10.1 = 10+0.1
(10.1)2= 10+0.1 [ಈಗ (a+b)2= a2+ 2ab+b2 ಸಮೀಕರಣ ಬಳಸಿ]
= 102+ 2*10*0.1+ (0.1)2
= 100+2+0.01 = 102.01
ಪರಿಹಾರ:
4x2 ವು a2 ರೂಪದಲ್ಲಿದೆ (a = 2x).
ಆದರೆ 8y2 ಪೂರ್ಣವರ್ಗವಲ್ಲ. 9y2 ವು ಪೂರ್ಣವರ್ಗ. b = 3y
=2ab = 2*2x*3y = 12xy
4x2+12xy+ 9 y2 ಈ ಬೀಜೋಕ್ತಿಯು ಪೂರ್ಣವರ್ಗ.
ಆದ್ದರಿಂದ ದತ್ತ ಬೀಜೋಕ್ತಿಯನ್ನು ಒಂದು ಪೂರ್ಣವರ್ಗವನ್ನಾಗಿ ಮಾಡಲು ಅದಕ್ಕೆ (y2) ವನ್ನು ಕೂಡಿಸಬೇಕು.
[ಈ ಸಮಸ್ಯೆಗೆ ಇನ್ನೂ ಹಲವು ಪರಿಹಾರ ಕ್ರಮಗಳಿವೆ.]
ಈಗ ಇನ್ನೊಂದು ನಿತ್ಯ ಸಮೀಕರಣ ನೋಡುವಾ.
ಸಮೀಕರಣ (1) ರಲ್ಲಿ bಯನ್ನು-b, c ಯನ್ನುa ಮತ್ತು d ಯನ್ನು-b ದಿಂದ ಬದಲಾಯಿಸಿದಾಗ,
(a-b)*(a-b)
= a*a+ a(*-b) + (–b)*a +b*(-b)
= a2-ab-ab+ b2
= a2-2ab+ b2
ಪರಿಹಾರ:
4.9 = (5-0.1)
(4.9)2 – ಇದು (a-b)2 ರೂಪದಲ್ಲಿದೆ. a=5 and b=0.1
4.92 = (5-0.1)
= 52+-2*5*0.1+ (0.1)2
= 25 -1 +.01
= 24.01
ಪರಿಹಾರ:
ಇದು (a-b)2 ರೂಪದಲ್ಲಿದೆ ಹಾಗೂ a=x ಮತ್ತು b=1/x
(x-1/x)2= x2-2x(1/x)+ (1/x)2
= x2-2+ 1/x2
ಸಮೀಕರಣ(1) ರಲ್ಲಿ cಯನ್ನು a , d ಯನ್ನು -b ದಿಂದ ಬದಲಾಯಿಸುವ.
ಈಗ ಇನ್ನೊಂದು ಗುಣಲಬ್ಧ ನೋಡುವಾ.
(a+b)*(a-b) = aa+a*(-b)+ba+b*(-b)
= a2-ab+ab-b2 ( -ab+ab=0)
= a2-b2
9.5 * 10.5 = (10-0.5 )*(10+0.5)
9.5* 10.5 ಎನ್ನುವುದು (a+b)(a-b) ರೂಪದಲ್ಲಿದೆ ಮತ್ತು ಇಲ್ಲಿ a=10, b=0.5.
9.5*10.5
= 102- (0.5)2
= 100-0.25 = 99.75
ಪರಿಹಾರ:
(a+b)*(a-b) ರೂಪದಲ್ಲಿರುವ ಸಮೀಕರಣದಲ್ಲಿ ಮೊದಲ ಎರಡು ಪದಗಳನ್ನು ಸುಲಭೀಕರಿಸುವ.
(x+2)(x-2) = ( x2-4)
(x+2)(x-2)( x2+4)= ( x2-4) * ( x2+4)
= ( x4-16) ( x2 ನ ವರ್ಗ x4)
ಸಮೀಕರಣ (1) ರಲ್ಲಿ b ಯನ್ನು b+c, c ಯನ್ನು a+b ಮತ್ತು d ಯನ್ನು c ದಿಂದ ಬದಲಾಯಿಸುವ.
ಈಗ ತ್ರಿಪದದೋಕ್ತಿಯ ವರ್ಗ ನೋಡುವಾ:
(a+(b+c))*((a+b)+c))
= a(a+b) + ac+ (b+c)(a+b)+ (b+c)c
= (a.a+ab)+ac+(ba+ b.b+ca+cb)+(bc+ c.c)
= a2+ab+ac+ba+ b2+ca+cb+bc+ c2
= a2 + b2+ c2+ab+ba+ac+ca+ cb+bc (ಪದಗಳನ್ನು ಹೊಂದಿಸಿ ಬರೆದಾಗ)
= a2 + b2+ c2+2ab+2bc+2ca
(a+b+c)2 = a2 + b2+ c2+2ab+2bc+2ca
ಪರಿಹಾರ:
173 ನ್ನು (100+70+3) ಎಂದು ಬರೆಯಬಹುದು.
1732 ನ್ನು (a+b+c)2 ದ ರೂಪದಲ್ಲಿ ಬರೆದಾಗ,
a=100,b=70 and c=3
1732= 1002+702+32+ 2*100*70 +2*70*3+2*3*100
= 10000+4900+9+14000+420+600
= 29929
ಪರಿಹಾರ:
(x2 + y2- z2)2 ಇದು (a+b+c)2 ಈ ರೂಪದಲ್ಲಿದೆ.
ಇಲ್ಲಿ a = x2 , b = y2 and c = - z2
= (x2 + y2- z2)2 = (x4 + y4+z4 + 2 x2 y2 - 2 y2 z2-2 z2 x2)
ಇದೇ ರೀತಿ,
(x2 - y2+z2)2 = (x4 + y4+z4 - 2 x2 y2 - 2 y2 z2+2 z2 x2)
(x2 + y2- z2)2 -(x2 - y2-+z2)2
= (x4 + y4+z4 + 2 x2 y2 - 2 y2 z2-2 z2 x2) -(x4 + y4+z4 - 2 x2 y2 - 2 y2 z2+2 z2 x2)
= (x4 + y4+z4 + 2 x2 y2 - 2 y2 z2-2 z2 x2) -x4 - y4-z4 +2 x2 y2 + 2 y2 z2-2 z2 x2
= 4x2 y2 -4 z2 x2
=4x2 (y2 -z2)
(a+b)3 ಇದನ್ನು ವಿಸ್ತರಿಸಿ.
(a+b)3
= (a+b)*(a+b)*(a+b)
= (a+b)*( a2+ 2ab+b2) ( (a+b)2= a2+ 2ab+b2)
= a*( a2+ 2ab+b2)+b*( a2+ 2ab+b2) (ಮೊದಲನೆ ಬೀಜಾಕ್ಷರ ಪದದ ಪ್ರತೀಪದವನ್ನು ಇನ್ನೊಂದು ಬೀಜಾಕ್ಷರ ಪದದ ಪ್ರತೀಪದದೊಂದಿಗೆ ಗುಣಿಸಿದಾಗ)
= a3+ 3a2b+ 3ab2+b3 (ಸಜಾತೀಯ ಪದಗಳನ್ನು ಕೂಡಿಸಿದಾಗ)
= a3+ 3ab(a+b)+b3 (ಸಾಮಾನ್ಯ ಪದವನ್ನು ಹೊರತೆಗೆದಾಗ)
ವಿ. ಸೂ. ಈ ಸೂತ್ರವನ್ನು ಭಾಸ್ಕರನು ಲೀಲಾವತಿಯ 27 ನೇ ಶ್ಲೋಕದಲ್ಲಿ ನೀಡಿದ್ದಾನೆ.
ಅಭ್ಯಾಸ: (a-b)3= a3-3ab(a-b)-b3 - ಈ ಸೂತ್ರವನ್ನು ಸಾಧಿಸಿ.
ಪರಿಹಾರ:
51 = 50+1.( ಇದು (a+b)3 ರೂಪದಲ್ಲಿದೆ.)
513 = 503+ 3*50*1(50+1)+13 [(a+b)3 = a3+ 3ab(a+b)+b3]
= 125000+7650+1
=132651
ಪರಿಹಾರ:
(x+1/x)3 ಇದು (a+b)3 ರೂಪದಲ್ಲಿದೆ.
(x+1/x)3
= x3+ 3x*1/x(x+1/x)+(1/x)3
= x3+ 3(x+1/x)+(1/x3)
= x3+ 3x+3/x+1/x3
ಪರಿಹಾರ:
9.9 = (10-0.1)
= 9.93 ಇದು (a-b)3 ರೂಪದಲ್ಲಿದೆ a=10 , b=0.1.
(9.9)3= 103-3*10*0.1*(10-0.1)-(0.1)3
= 1000-3*9.9- 0.001
= 1000-29.7-.001
= 970.299
ಪರಿಹಾರ:
(x/2-y/3)3 ಇದು (a-b)3 ರೂಪದಲ್ಲಿದೆ.
(x/2-y/3)3
= (x/2)3- 3(x/2)*(y/3)(x/2-y/3)-(y/3)3
= x3/8 – (xy/2)*(x/2-y/3)-y3/27 (ಸಂಕ್ಷೇಪಿಸಿದಾಗ)
= x3/8 – x2y/4 +xy2/6-y3/27
ಪರಿಹಾರ:
(a+b) (a2+b2-ab)
= a(a2+b2-ab) +b(a2+b2-ab)
= a*a2+a*b2-a*ab + b*a2+b*b2-b*ab
=a3+ab2-a2b + ba2+b3-ab2 (ಸಮಾನ ಧನಾತ್ಮಕ ಮತ್ತು ಋಣಾತ್ಮಕ ಪದಗಳನ್ನು ಸರಿದೂಗಿಸಿದಾಗ)
=a3+b3
ಪರಿಹಾರ:
(a+b+c)2 = (a2+b2+ c2)+2ab+2bc+2ca
ಮೇಲಿನ ಸಮಿಕರಣದಲ್ಲಿ ದತ್ತ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸಿದಾಗ,
122= 50+2(ab+bc+ca)
144-50 = 2(ab+bc+ca)
ab+bc+ca = 47
(x+y)2/xy +(y+z)2/yz+(z+x)2/zx ರ ಬೆಲೆ ಕಂಡು ಹಿಡಿಯಿರಿ
ಪರಿಹಾರ:
ದತ್ತ x+y+z=0
ಆದ್ದರಿಂದ x+y = -z, y+z = -x and z+x = -y
(x+y)2/xy +(y+z)2/yz+(z+x)2/zx
= z2/xy+x2/yz+y2/zx
= z3/xyz+x3/xyz+y3/zxy (xyz ನ್ನ ಸಾಮಾನ್ಯ ಛೇದ ಮಾಡಿದೆ)
= (x3+y3+ z3)/xyz
= 3xyz/xyz
=3
ಸಂ. |
ಸೂತ್ರ |
ವಿಸ್ತರಣೆ |
1 |
(a+b)(c+d) |
ac+ad+bc+bd |
2 |
(x+a)*(x+b) |
x2+x(a+b)+ab |
3 |
(a+b)2 |
a2+b2+2ab |
4 |
(a-b)2 |
a2+b2-2ab |
5 |
(a+b)(a-b) |
a2-b2 |
6 |
(a+b+c)2 |
a2+b2+ c2+2ab+2bc+2ca |
7 |
(a+b)3 |
a3+b3+3ab(a+b) |
8 |
(a-b)3 |
a3-b3-3ab(a-b) |
ಎರಡು ಅಥವಾ ಹೆಚ್ಚು ಸಂಖ್ಯೆಗಳ ಮ.ಸಾ.ಅ ಎಂದರೇನೆಂದು ನಮಗೀಗಾಗಲೇ ತಿಳಿದಿದೆ. ಅದು ಎಲ್ಲಾ ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳಲ್ಲಿ ಅತಿದೊಡ್ಡದಾಗಿದೆ.
ಉದಾಹರಣೆಗೆ 4, 8, 20, 16. - ಈ ನಾಲ್ಕು ಸಂಖ್ಯೆಗಳನ್ನು ನೋಡಿ. 2 ಮತ್ತು 4 ಇವೆರಡು ಮೇಲಿನ ನಾಲ್ಕು ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತನವಾಗಿದ್ದು 4 ದೊಡ್ಡದಾಗಿದೆ. 4, 8, 20, 16- ಇವುಗಳ ಮ.ಸಾ.ಅ 4.
ಮ.ಸಾ.ಅ ವು ಭಿನ್ನರಾಶಿಗಳನ್ನು ಸುಲಭ ರೂಪಕ್ಕೆ ತರಲು ಉಪಯುಕ್ತ.
ಉದಾಹರಣೆಗೆ ಒಂದು ಭಿನ್ನರಾಶಿ = 30/48 ನ್ನು ನೋಡುವಾ.
30 ಮತ್ತು 48 ರ ಮ.ಸಾ.ಅ 6.
30/48 = (6*5)/(6*8) ಅಂಶ ಮತ್ತು ಛೇದಗಳಲ್ಲಿನ ಸಾಮಾನ್ಯ ಅಪವರ್ತ್ಯಗಳನ್ನು ತೆಗೆದಾಗ
= 5/8
ಲ.ಸಾ.ಅ ಎಂದರೇನು? ಅದು ದತ್ತ ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ಗುಣಕ (ಅಪವರ್ತ್ಯ) ಗಳಲ್ಲಿ ಚಿಕ್ಕದು ಆಗಿರುತ್ತದೆ.
ಉದಾಹರಣೆಗೆ 4, 8, 20, 16 ಇವುಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತ್ಯಗಳು =80, 160, 320 … ಇವುಗಳಲ್ಲಿ ಚಿಕ್ಕದು = 80 .
ಇದು ದತ್ತ ಸಂಖ್ಯೆಗಳ ಲ.ಸ.ಅ.
ಲ.ಸಾ.ಅ ವು ಭಿನ್ನರಾಶಿಗಳನ್ನು ಕೂಡಿಸಲು ಉಪಯುಕ್ತ.
ಈಗ 1/4, 1/8, 1/20 ನ್ನ ಕೂಡಿಸುವಾ.
4,8,20 ರ ಲ.ಸಾ.ಅ = 40
1/4 = 10/40
1/8 = 5/40
1/20 = 2/40
1/4+1/8+1/20 = 10/40+5/40+2/40 = (10+5+2)/40 = 17/40
ಬೀಜೋಕ್ತಿಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅಗಳನ್ನು ಕಂಡುಹಿಡಿಯಲು ಕೂಡಾ ನಾವು ಮೇಲಿನ ಕ್ರಮವನ್ನೇ ಅನುಸರಿಸುತ್ತೇವೆ. ಈಗ ಸಂಖ್ಯೆಗಳ ಮ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯುವ ಕ್ರಮವನ್ನು ಪುನರಾವರ್ತಿಸುವಾ
ಹಂತ |
ವಿಧಾನ |
1 |
ಎಲ್ಲಾ ಸಂಖ್ಯೆಗಳನ್ನು ಪಟ್ಟಿಮಾಡಿ. |
2 |
ಎಡಭಾಗದಲ್ಲಿ ಎಲ್ಲ ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ವಿಭಾಜಕವನ್ನು ಬರೆಯಿರಿ. |
3 |
2ನೇ ಸಾಲಿನಲ್ಲಿ ಭಾಗಲಬ್ಧಗಳನ್ನು ಬರೆಯಿರಿ. |
4 |
2ನೇ ಸಾಲಿನಲ್ಲಿ ಪಡೆದ ಸಂಖ್ಯೆಗಳ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಭಾಜಕವನ್ನು ಎಡಬದಿಯಲ್ಲಿ ಬರೆಯಿರಿ. |
5 |
ಎಲ್ಲಾ ಪದಗಳಿಗೂ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳು ಸಿಗುವವರೆಗೂ ಈ ಕ್ರಿಯೆಯನ್ನು ಮುಂದುವರಿಸಿ. |
ಸಾಮಾನ್ಯ ಭಾಜಕಗಳ ಗುಣಲಬ್ಧವೇ ದತ್ತ ಸಂಖ್ಯೆಗಳ ಮ.ಸಾ.ಅ.
ಉದಾ: 16,24,20 ರ ಮ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಿರಿ.
2 | 16,24,20
2 | 8,12,10
4, 6, 5
4, 6, 5 ಮೂರು ಸಂಖ್ಯೆಗಳಿಗೆ ಇನ್ನು ಸಾಮಾನ್ಯ ಭಾಜಕ ಇಲ್ಲ. ಆದ್ದರಿಂದ ಭಾಗಾಕಾರವನ್ನು ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
16,24,20 ಇವುಗಳ ಮ.ಸಾ.ಅ = (2*2) = 4
ಹಂತ |
ವಿಧಾನ |
1 |
ಎಲ್ಲಾ ಸಂಖ್ಯೆಗಳನ್ನು ಪಟ್ಟಿಮಾಡಿ. |
2 |
ಎಡಭಾಗದಲ್ಲಿ ಎಲ್ಲ ಸಂಖ್ಯೆಗಳ ಸಾಮಾನ್ಯ ವಿಭಾಜಕವನ್ನು ಬರೆಯಿರಿ. |
3 |
2ನೇ ಸಾಲಿನಲ್ಲಿ ಭಾಗಲಬ್ಧಗಳನ್ನು ಬರೆಯಿರಿ. |
4 |
2ನೇ ಸಾಲಿನಲ್ಲಿ ಪಡೆದ ಸಂಖ್ಯೆಗಳ ಕನಿಷ್ಟ ಸಾಮಾನ್ಯ ಭಾಜಕವನ್ನ ಎಡಬದಿಯಲ್ಲಿ ಬರೆಯಿರಿ. |
5 |
ಯಾವುದೇ ಎರಡು ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳು ಇಲ್ಲದೇ ಇರುವಾಗ ಈ ಕ್ರಿಯೆಯನ್ನು ನಿಲ್ಲಿಸಿ. |
ಸಾಮಾನ್ಯ ಭಾಜಕಗಳ ಮತ್ತು ಉಳಿದ ಸಂಖ್ಯೆಗಳ ಗುಣಲಬ್ಧವೇ ಲ.ಸಾ.ಅ.
ಉದಾ: 16,24,20 ಇವುಗಳ ಲ.ಸಾ.ಅ
2 | 16,24,20
2 | 8,12,10
2 | 4,6,5
| 2,3,5
ದತ್ತ ಸಂಖ್ಯೆಗಳ ಲ.ಸಾ.ಅ (2*2*2)*(2*3*5) = 240
ಗಮನಿಸಿ : ಯಾವುದೇ 2 ಸಂಖ್ಯೆಗಳ ಮ.ಸಾ.ಅ * ಲ.ಸಾ.ಅ = ಆ ಸಂಖ್ಯೆಗಳ ಗುಣಲಬ್ಧ..
ಈ ನಿಯಮವನ್ನು ಬೀಜಾಕ್ಷರ ಪದಗಳಿಗೂ ಉಪಯೋಗಿಸಬಹುದು. ಹೀಗಾಗಿ 2ಪದಗಳ ಗುಣಲಬ್ಧ ಮತ್ತು ಅವುಗಳ ಮ.ಸಾ.ಅ ಅಥವಾ ಲ.ಸಾ.ಅ ನಮಗೆ ತಿಳಿದಿದ್ದರೆ, ಕ್ರಮವಾಗಿ ಲ.ಸಾ.ಅ ಅಥವಾ ಮ.ಸಾ.ಅ ಗಳನ್ನು ನಾವುಕಂಡುಹಿಡಿಯಬಹುದು.
ಸಮಸ್ಯೆ 1 : 16a4b3x3, 24b2m3n4y, 20a2b3nx3 ಇವುಗಳ ಮ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿಗಳ ಸಂಖ್ಯಾ ಸಹಗುಣಕಗಳ (16,24,20) ಮ.ಸಾ.ಅ = 4
ಚರಾಕ್ಷರಗಳ ಭಾಗ : a4b3x3, b2m3n4y, a2b3nx3 ಇವುಗಳಲ್ಲಿ b ಯು ಸಾಮಾನ್ಯ ಅಪವರ್ತನ.
4b | 16a4b3x3, 24b2m3n4y, 20a2b3nx3 (ಎಲ್ಲಾ ಪದಗಳಿಗೆ 4b ಯು ಸಾಮಾನ್ಯ ಪದವಾಗಿರುವುದರಿಂದ, 4b ನಿಂದ ಭಾಗಿಸುವಾ.
b | 4a4b2x3, 6bm3n4y, 5a2b2nx3 (b ಯು ಎಲ್ಲಾ ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ)
|4a4bx3, 6m3n4y, 5a2bnx3
ಇನ್ನು ಎಲ್ಲವುದಕ್ಕೂ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳು ಇಲ್ಲ. ಆದ್ದರಿಂದ ಭಾಗಾಕಾರ ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
ದತ್ತ ಪದಗಳ ಮ.ಸಾ.ಅ = 4b*b= 4b2
ಬೀಜೋಕ್ತಿಗಳ ಸಂಕಲನ, ವ್ಯವಕಲನದಲ್ಲಿ ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳನ್ನು ಪ್ರತ್ಯೇಕಿಸಿ, ಸುಲಭರೂಪಕ್ಕೆ ತರಲು ಮ.ಸಾ.ಅ ಸಹಾಯಕ
ಉದಾ: 16a4b3x3+24b2m3n4y- 20a2b3nx3
16a4b3x3+24b2m3n4y- 20a2b3nx3
=4b2(4a4bx3+6m3n4y- 5a2bnx3)
ಸಮಸ್ಯೆ 2 : 6x2y3, 8x3y2, 12x4y3, 10x3y4 – ಇವುಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸ.ಅ ಕಂಡುಹಿಡಿ.
ಪರಿಹಾರ:
1) ಮ.ಸ.ಅ ಕಂಡುಹಿಡಿಯುವುದು:
ಸಂಖ್ಯಾ ಸಹಗುಣಕಗಳ ಮ.ಸಾ.ಅ = 2
ಉಳಿದ ಭಾಗಗಳ ಕನಿಷ್ಟ ಭಾಜಕ = x
2x | 6x2y3, 8x3y2, 12x4y3, 10x3y4 (2x ಎಲ್ಲಾ ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ )
x | 3xy3, 4x2y2, 6x3y3, 5x2y4
y |3y3, 4xy2, 6x2y3, 5xy4
y |3y2, 4xy, 6x2y2, 5xy3
3y, 4x, 6x2y, 5xy2
ಎಲ್ಲಾ ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ ಇಲ್ಲದೇ ಇರುವುದರಿಂದ ಭಾಗಾಕಾರವನ್ನು ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
ದತ್ತ ಪದಗಳ ಮ.ಸಾ.ಅ = 2x*x*y*y = 2x2y2
ಸಂಕ್ಷೇಪಿಸಿ: 6x2y3+8x3y2-12x4y3+10x3y4
6x2y3+8x3y2-12x4y3+10x3y4
= 2x2y2(3y+4x-6x2y+5xy2)
ಲ.ಸ.ಅ ಕಂಡುಹಿಡಿಯುವುದು:
2x | 6x2y3, 8x3y2, 12x4y3, 10x3y4 (2x ಎಲ್ಲಾ ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ)
x | 3xy3, 4x2y2, 6x3y3, 5x2y4
y |3y3, 4xy2, 6x2y3, 5xy4
y |3y2, 4xy, 6x2y2, 5xy3
Y |3y, 4x, 6x2y , 5xy2
x | 3, 4x 6x2, 5xy
2 | 3, 4 6x 5y
3 | 3, 2 3x 5y
| 1, 2 x 5y
ಯಾವುದೇ ಎರಡು ಪದಗಳಿಗೆ ಸಾಮಾನ್ಯ ಪದ ಇಲ್ಲದೇ ಇರುವುದರಿಂದ ಭಾಗಾಕಾರವನ್ನು ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
ದತ್ತ ಪದಗಳ ಲ.ಸಾ.ಅ =( 2x*x*y*Y)*(Y*x*2*3*2*x*5y) =2x2y2* 60x2y2 = 120x4y4
ಲ. ಸ.ಅ ದ ಉಪಯೋಗ:
ಸಂಕ್ಷೇಪಿಸಿ:: (1/6x2y3)+(1/8x3y2)-(1/12x4y3 )+(1/10x3y4)
ಗಮನಿಸಿ:
(1/6x2y3) = (20x2y/120x4y4)
(1/8x3y2) = (15xy2/120x4y4)
(1/12x4y3) = (10y/120x4y4)
(1/10x3y4) = (12x/120x4y4)
(1/6x2y3)+(1/8x3y2)-(1/12x4y3 )+(1/10x3y4)
= (20x2y+15xy2-10y+12x)÷(120x4y4)
ಬೀಜಗಣಿತದ ಸಮಸ್ಯೆಗಳನ್ನು ಪರಿಹರಿಸಲು ಬೀಜೋಕ್ತಿಗಳನ್ನು ಸುಲಭರೂಪಕ್ಕೆ ತರುವುದು ಬಹಳ ಅಗತ್ಯ. 5-(3a2-2a)( 6-3a2+2a) = (3a+1)(a-1) (3a-5)(a+1) ಎಂದು ನಿಮಗೆ ಗೊತ್ತೇ? a=1, -1 ಎಂಬ ಬೆಲೆಗಳಿಗೆ ಇದುಸರಿಯಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸಿ.ಹಾಗಿದ್ದಲ್ಲಿ a ನ ಎಲ್ಲಾ ಬೆಲೆಗೆ ಇದು ಸರಿ ಹೊಂದುತ್ತದೆ ಎಂದು ಸಾಧಿಸುವುದು ಹೇಗೆ? ( ಸಮಸ್ಯೆ 6 ನ್ನು ನೋಡಿ) ಬೀಜೋಕ್ತಿಗಳನ್ನು ಎರಡು ಅಥವಾ ಹೆಚ್ಚು ಪದಗಳ (ಅಪವರ್ತನಗಳ)ಗುಣಲಬ್ಧವಾಗಿಬರೆಯುವ ಕ್ರಮವನ್ನು ಅಪವರ್ತಿಸುವಿಕೆ ಎನ್ನುವರು.ಬೀಜೋಕ್ತಿಗಳನ್ನು ಸುಲಭರೂಪಕ್ಕೆ ತರಲು ಅಪವರ್ತಿಸುವಿಕೆ ಅಗತ್ಯ.
ಬೀಜೋಕ್ತಿಗಳ ಮ. ಸಾ. ಅ ವನ್ನು ಹೊರಗೆ ತೆಗೆದು ಸುಲಭರೂಪಕ್ಕೆ ತರಬಹುದು. ಉದಾ:
4x2y, 8x3 ಮತ್ತು 12xy ಗಳ ಮ.ಸಾ.ಅ 4x
4x2y+8x3+12xy = 4x (xy+2x2+3y)
ಎಲ್ಲಾ ಸಂದರ್ಭಗಳಲ್ಲಿ ಸುಲಭ ರೂಪದಲ್ಲಿ ತರಲು ಸಾಧ್ಯವಾಗದೇ ಇರಬಹುದು ಉದಾ: 4x2+5y (ಏಕೆ ಎಂದು ಯೋಚಿಸಿ)
x2+mx +c ರೂಪದ ತ್ರಿಪದೋಕ್ತಿಯನ್ನು ಅಪವರ್ತಿಸುವುದು ಹೇಗೆ?
ಉದಾ: x2+x(a+b)+ab - ಈ ಬೀಜೋಕ್ತಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳುವಾ.
x2+x(a+b)+ab
= (x2+xa)+(xb+ab) ( ಪದಗಳ ಪುನರ್ಜೋಡಣೆ)
= x(x+a)+b(x+a) ( x2 ಮತ್ತು xa ನ ಸಾಮಾನ್ಯ ಪದ x, ಮತ್ತು xb ಮತ್ತು ab ನ ಸಾಮಾನ್ಯ ಪದ b )
= (x+a)(x+b)
ಆದ್ದರಿಂದ x+a ಮತ್ತು x+b ಗಳು x2+x(a+b)+ab ಈ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು.
ಅರ್ಥಾತ್ x2+x(a+b)+ab ಯನ್ನು x+a ಮತ್ತು x+b ಎಂಬ ಪದಗಳ ಗುಣಲಬ್ಧವಾಗಿ ಬರೆಯಬಹುದು
ಉದಾ:
x2+5x+6
=x2+3x+2x+6
=x(x+3)+2(x+3)
=(x+3)*(x+2)
x+3 ಮತ್ತು x+2 ಇವುಗಳು x2+5x+6 ರ ಅಪವರ್ತನಗಳು.
ಇವು x+a ಮತ್ತು x+b ರೂಪದಲ್ಲಿವೆ.
ಈ x+a ಮತ್ತು x+b ಎಂಬ ಅಪವರ್ತನಗಳು ಹೇಗಿವೆ?
a+b= 5 , ab=6 ರೂಪದಲ್ಲಿವೆ.
ಪರಿಶೀಲನೆಯಿಂದ, a=3 ಮತ್ತು b=2 ಬೆಲೆಗಳು a+b=5 ಮತ್ತು ab=6 ಎಂಬ ನಿಯಮಕ್ಕೆ ಬದ್ಧವಾಗಿವೆ.
ಆದ್ದರಿಂದಲೇ 5x ನ್ನು 3x+2x ಎಂದು ವಿಭಜಿಸಿದ್ದು.
ಬೇರೆ ಯಾವುದೇ ರೀತಿಯಲ್ಲಿ 5x ನ್ನು ವಿಭಾಗಿಸಲಾಗುವುದಿಲ್ಲ.
ಆದರೆ ಎಲ್ಲಾ ತ್ರಿಪದೋಕ್ತಿಗಳನ್ನು ಈ ರೀತಿ ಅಪವರ್ತಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ. ಅಂಥ ಬೀಜೋಕ್ತಿಗಳ ಬಗ್ಗೆ ಮುಂದೆ ತಿಳಿಯುವಾ
x2+5x+6 ಬೀಜೋಕ್ತಿಯು x2+mx +c ರೂಪದಲ್ಲಿದೆ m = 5 and c=6.
ಸಮಸ್ಯೆ 1: ಅಪವರ್ತಿಸಿ x2+27x+176
ಪರಿಹಾರ:
ಈಗ ನಾವು a+b=27 ab=176 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಬೇಕು.
176 ರ ಅಪವರ್ತನಗಳು: (2, 88), (4, 44), (8, 22), (16, 11).
176 ರ ಋಣ ಅಪವರ್ತನಗಳನ್ನು ಬಿಟ್ಟಿದ್ದೇವೆ. ಏಕೆಂದರೆ ಅವುಗಳ ಮೊತ್ತ ಧನಸಂಖ್ಯೆಯಾಗಲು ಸಾಧ್ಯವಿಲ್ಲ.
ಮೇಲಿನ ಗುಂಪುಗಳಲ್ಲಿ (16, 11) ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
ಇಲ್ಲಿ a= 16 ಮತ್ತು b=11
x2+27x+176 = x2+16x+11x+ 176
=x(x+16) +11(x+16)
=(x+16) (x+11)
x2+27x+176 ರ ಅಪವರ್ತನಗಳು: (x+16) ಮತ್ತು (x+11)
ತಾಳೆ:
(x+16)(x+11) ಇದು (x+a)*(x+b) ರೂಪದಲ್ಲಿದೆ a=16 , b=11
(x+16)*(x+11) = x2+ x(16+11)+ 16*11
= x2+27x+176 ದತ್ತ ಬೀಜೋಕ್ತಿ.
ಸಮಸ್ಯೆ 2 : ಅಪವರ್ತಿಸಿ x2-6x-135
ಪರಿಹಾರ:
a+b= -6 , ab= -135 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
-135 ರ ಅಪವರ್ತನಗಳು: (3,-45), (-3, +45), (5,-27), (-5, +27), (9,-15), (-9, +15)
ಈ ಜೋಡಿಗಳಲ್ಲಿ, 9-15 = -6 , 9*-15 = -135. ಈ ಜೋಡಿ ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
a= 9 , b= -15
x2-15x+9x -135
=x(x-15)+9(x-15)
=(x-15)(x+9)
x2-6x-135 ರ ಅಪವರ್ತನಗಳು:
(x-15) ಮತ್ತು (x+9)
ತಾಳೆ:
(x-15)(x+9) ಇದು (x+a)*(x+b) ರೂಪದಲ್ಲಿದೆ. a=-15, b=9
(x-15)*(x+9) = x2+ x(-15+9)+ (-15*9)= x2-6x-135 - ದತ್ತ ಬೀಜೋಕ್ತಿ.
ಸಮಸ್ಯೆ 3: ಅಪವರ್ತಿಸಿ, m2+4m-96
ಪರಿಹಾರ:
ಈಗ a+b= 4 ,ab= -96 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
(-96) ರ ಅಪವರ್ತನಗಳು: (2,-48), (-2, 48), (3,-32), (-3, +32), (4,-24), (-4, +24), (6,-16), (-6,16), (8,-12), (-8,12)
ಇವುಗಳಲ್ಲಿ - 8+12 = 4 , -8*12 = -96. ಈ ಜೋಡಿ ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
a= -8 , b=12
m2-8m+12m -96
=m(m-8)+12(m-8)
=(m-8)(m+12)
m2+4m-96 ರ ಅಪವರ್ತನಗಳು: (m-8) ಮತ್ತು (m+12)
ತಾಳೆ:
(m-8)(m+12) ಇದು (m+a)*(m+b) ರೂಪದಲ್ಲಿದ್ದು
a=-8, b=12
(m-8)*(m+12) = m2+ m(-8+12)+ -8*12
= m2+4m-96 - ದತ್ತ ಬೀಜೋಕ್ತಿ
ಈಗ, px2+mx +c ರೂಪದ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸುವಾ.ಇಲ್ಲಿ x2, ದ ಸಹಗುಣಕ 1 ರ ಬದಲಾಗಿ p.
ನಾವಿಲ್ಲಿ a+b=m ಮತ್ತು ab=pc ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
ಸಮಸ್ಯೆ 3: ಮೂರು ಅನುಕ್ರಮ ಸಮ ಸಂಖ್ಯೆಗಳ ಮೊತ್ತ 252. ಆದರೆ ಆ ಸಂಖ್ಯೆಗಳಾವುವು : ಅಪವರ್ತಿಸಿ 24x2-65x+21
ಪರಿಹಾರ:
ಈಗ ನಾವು a+b= -65 ಮತ್ತು ab= 24*21 =504 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
(24*21) ರ ಅಪವರ್ತನಗಳ ಜೊತೆಗಳು:(2,252), (-2,-252), (3, 138 ), (-3,-138), (4,126), (-4,-126), (6,83),
(-6,-83), (8,63), (-8,-63), (9,56), (-9,-56), (12,42), (-12,-42)
ಇವುಗಳಲ್ಲಿ, (-9-56) = -65 , -9*(-56) = 504=24*21 ಈ ಜೋಡಿ ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
a= -9 , b= -56
24x2-65x+21
=24x2-9x -56x+21 ( -65x ನ್ನು -9x-56x ಎಂದು ಬರೆದಿದೆ.)
=3x(8x-3) -7(8x-3) {(24x2 ಮತ್ತು , 9x. ಗಳ ಮ.ಸಾ.ಅ 3x
-56x ಮತ್ತು 21 ಗಳ ಮ.ಸಾ.ಅ -7)}
= (8x-3)(3x-7) ( 8x-3 ಸಾಮಾನ್ಯ ಪದ)
24x2-65x+21 ರ ಅಪವರ್ತನಗಳು: (8x-3) ಮತ್ತು (3x-7 )
ತಾಳೆ:
(8x-3)(3x-7)
=8x(3x-7)-3(3x-7) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿದಾಗ)
=24x2-56x -9x+21 (ಸುಲಭೀಕರಿಸಿದಾಗ)
=24x2-65x+21 – ದತ್ತ ಬೀಜೋಕ್ತಿ.
ಸಮಸ್ಯೆ 5: ಅಪವರ್ತಿಸಿ 6p2+11pq -10q2
ಪರಿಹಾರ:
ಈಗ, a+b= 11 , ab= 6*(-10) =-60 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
-60 ರ ಅಪವರ್ತನಗಳ ಜೊತೆಗಳು: (2,-30), (-2,30),(3, -20 ),(-3,20) (4,-15), (-4,15), (5,-12),(-5,12),(6,-10),
(-6,10)
ಇವುಗಳಲ್ಲಿ,- 4+15 = 11 , -4*15 = -60 a=15, b=-4. ಈ ಜೋಡಿ ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
6p2+11pq -10q2
=6p2+15pq -4pq-10q2( 11pq = 15pq-4pq)
=3p(2p+5q) -2q(2p+5q)
=(2p+5q)(3p-2q)
6p2+11pq -10q2 ರ ಅಪವರ್ತನಗಳು: 2p+5q ಮತ್ತು 3p-2q
ತಾಳೆ:
(2p+5q)(3p-2q)
=2p(3p-2q)+5q(3p-2q) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿದಾಗ)
=6p2-4pq +15qp-10q2 (ಸುಲಭೀಕರಿಸಿದಾಗ)
= 6p2+11pq -10q2 - ದತ್ತ ಬೀಜೋಕ್ತಿ.
ಸಮಸ್ಯೆ 6: ಅಪವರ್ತಿಸಿ, 5-(3a2-2a) (6-3a2+2a)
ಪರಿಹಾರ:
ಇಲ್ಲಿ x =3a2-2a ಎಂದು ತೆಗೆದುಕೊಳ್ಳುವಾ.
ಆದ್ದರಿಂದ 5-x( 6-x) ವನ್ನು ಅಪವರ್ತಿಸಬೇಕು.
5-x( 6-x)
= 5 -6x + x2
= x2 -6x +5 = x2 -5x -x+5
= x(x-5)-1(x-5)
= (x-1)(x-5)
x ನ ಬೆಲೆಯನ್ನು ಆದೇಶಿಸಿದಾಗ,
5-(3a2-2a)( 6-3a2+2a)
= (3a2-2a -1) (3a2-2a-5)
ಆದರೆ 3a2-2a -1 = 3a2-3a+a -1 = 3a(a-1)+1(a-1) = (3a+1)(a-1)
3a2-2a-5 = 3a2+3a -5a-5 = 3a(a-1)-5(a+1) = (3a-5)(a+1)
5-(3a2-2a)( 6-3a2+2a) = (3a+1)(a-1) (3a-5)(a+1)
ತಾಳೆ:
ಇಂತಹ ಸಮಸ್ಯೆಗಳನ್ನು ಬಿಡಿಸುವುದನ್ನು ಇಲ್ಲಿ ಕಲಿಯುತ್ತೇವೆ.
ವ್ಯಾಖ್ಯೆ:ಎರಡು ಬೀಜೋಕ್ತಿಗಳ ಸಮಾನತೆಯನ್ನು ಸೂಚಿಸುವ ಹೇಳಿಕೆಯನ್ನು ‘ಸಮೀಕರಣ’ (Equations) ಎನ್ನುತ್ತೇವೆ. ಸಮೀಕರಣದಲ್ಲಿ ಬರುವ ಒಂದು ಅಥವಾ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಅವ್ಯಕ್ತ ಪದಗಳ ರಾಶಿಯನ್ನು ‘ಚರಾಕ್ಷರ’ಗಳೆನ್ನುವರು.
ಉದಾ: x+2 =5
ಸಮೀಕರಣದ ಎಡಭಾಗವನ್ನು (LHS) ಎಂತಲೂ ಬಲಭಾಗವನ್ನು (RHS) ಎಂತಲೂ ಹೇಳುತ್ತೇವೆ.
ಗಮನಿಸಿ:
6=6 ಇದು ಸರಿತಾನೆ? ======è (1)
ಇಲ್ಲಿ ಎಡಭಾಗ (LHS) ದಲ್ಲಿ 6 ಇದೆ. ಬಲಭಾಗದಲ್ಲೂ 6 ಇದೆ. ಇವೆರಡೂ ಪರಸ್ಪರ ಸಮ.
ಈಗ 2 ನ್ನು ಸಮೀಕರಣ (1)ರ ಎರಡೂ ಬದಿಗಳಿಗೆ ಕೂಡಿಸುವಾ.
ಎಡಭಾಗ (LHS) =6+2=8 , ಬಲಭಾಗ (RHS) = 6+2 =8
ಈಗಲೂ ಕೂಡಾ ಎರಡೂ ಭಾಗಗಳು ಪರಸ್ಪರ ಸಮ.
ಈಗ ಸಮೀಕರಣ (1) ಎರಡೂ ಬದಿಗಳಿಂದ 3 ನ್ನ ಕಳೆಯುವಾ.
ಎಡಭಾಗ = 6-3 =3 , ಬಲಭಾಗ = 6-3 =3
ಈಗಲೂ ಕೂಡಾ ಎರಡೂ ಭಾಗಗಳು ಸಮ.
ಈಗ ಎರಡೂ ಬದಿಗಳಿಗೆ 6 ರಿಂದ ಗುಣಿಸಿ
ಎಡಭಾಗ = 6*6=36 , ಬಲಭಾಗ = 6*6 =36
ಈಗಲೂ ಎಡಭಾಗ = ಬಲಭಾಗ.
ಸಮೀಕರಣ (1)ರ ಎರಡೂ ಬದಿಗಳನ್ನು 3 ರಿಂದ ಭಾಗಿಸಿ.
ಎಡಭಾಗ = 6/3=2 , ಬಲಭಾಗ = 6/3=2
ಎಡಭಾಗ = ಬಲಭಾಗ.
ಸಮಾನತೆಯ ಗುಣಗಳು(ಸ್ವಯಂ ಸಿದ್ಧಗಳು) (Properties of Equality):(Axioms)
LHS=RHS ಇರುವ ಯಾವುದೇ ಸಮೀಕರಣದಲ್ಲಿ ಮೇಲಿನ ಯಾವುದಾದರೂ ಕ್ರಿಯೆಯನ್ನು ನಡೆಸಿದರೆ,ಫಲಿತಾಂಶವೂ LHS=RHS ಆಗಿರುತ್ತದೆ.
ವ್ಯಾಖ್ಯೆ:ಏಕ ಪರಿಮಾಣಾತ್ಮಕವಿರುವ ಬಹುಪದಗಳಾಗಲೀ, ಮೊದಲನೇ ಘಾತವಿರುವ ಚರಾಕ್ಷರಗಳನ್ನಾಗಲೀ ಹೊಂದಿರುವ ಸಮೀಕರಣಗಳೇ ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳು. (‘linear equation’)
ಉದಾ: x+2 =5, 3*(a-5) =6, ½ x -4/5 = 3x+7.
ಆದರೆ x2-4 =0 ಇದು ರೇಖಾತ್ಮಕ ಸಮೀಕರಣವಲ್ಲ (ಏಕೆಂದರೆ x ನ ಘಾತಾಂಕ 2)
ಉದಾಹರಣೆ1:
x-3 = 1 ಈ ಹೇಳಿಕೆಯನ್ನು ಗಮನಿಸಿ. ಇಲ್ಲಿ x ಒಂದು ಚರಾಕ್ಷರ.
ಈ ಹೇಳಿಕೆಯನ್ನ ಹೀಗೂ ಹೇಳಬಹುದು: “xನ ಬೆಲೆಯನ್ನು ಕಂಡು ಹಿಡಿಯಿರಿ- ಹೇಗೆಂದರೆ ಅದರಲ್ಲಿ 3 ನ್ನ ಕಳೆದಾಗ ಫಲಿತಾಂಶ 1 ಆಗಬಹುದು.”
ಈಗ x-3 =1 ಹೇಳಿಕೆಯಲ್ಲಿನ x ಗೆ ಬೇರೆಬೇರೆ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸುವಾ.
1. x = 1 ಆಗಲು ಸಾಧ್ಯವೆ? ಇಲ್ಲ. ಏಕೆಂದರೆ 1-3 =-2
2. x = 2 ಆಗಲು ಸಾಧ್ಯವೆ? ಇಲ್ಲ. ಏಕೆಂದರೆ 2-3 =-1
3. x =5 ಆಗಲು ಸಾಧ್ಯವೆ? ಇಲ್ಲ. ಏಕೆಂದರೆ 5-3 =2
4. x =4 ಆಗಲು ಸಾಧ್ಯವೆ? ಹೌದು 4-3=1.
ಈ ರೀತಿಯಲ್ಲಿ xನ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಲು ತುಂಬಾ ಸಮಯಬೇಕು.
ಆದರೆ ಗಣಿತ ಶಾಸ್ತ್ರದಲ್ಲಿ ಇದಕ್ಕೆ ಸುಲಭ ವಿಧಾನವಿದೆ.
ದತ್ತ ಹೇಳಿಕೆಯ ಎರಡೂಬದಿಗೆ 3ನ್ನೇ ಕೂಡಿಸುವಾ.
x-3+3= 1+3
x+0 = 4.
x= 4
ಇಲ್ಲಿ ನಾವೀಗ ಒಂದೇ ಪರಿಮಾಣ(=3)ವನ್ನು ಎರಡೂ ಬದಿಗಳಿಗೆ ಕೂಡಿಸಿದ್ದೇವೆ.
ಕೂಡಿಸಲು 3ನ್ನೇ ಯಾಕೆ ತೆಗೆದು ಕೊಂಡಿದ್ದೇವೆ?
ನಮಗೆ ಎಡಭಾಗದಲ್ಲಿ x ಬಿಟ್ಟು ಉಳಿದ ಯಾವ ಸಂಖ್ಯೆಯೂ ಬೇಡ. ಅದನ್ನು ತೆಗೆಯಲಿಕ್ಕಾಗಿ -3 ನ್ನು ತೆಗೆಯಲು 3 ನ್ನ ಕೂಡಿಸಬೇಕಾಯಿತು
ಉದಾಹರಣೆ 2: 6x+4 = 3x+10 ಆದರೆ x ನ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಿರಿ.
ಇಲ್ಲಿ: 6x+4
ಬಲಭಾಗ: 3x+10
ಹಂತ 1:
3x ನ್ನ ಎರಡೂ ಬದಿಗಳಿಂದ ಕಳೆಯಿರಿ.(ಯಾಕೆಂದರೆ ಬಲಭಾಗದಲ್ಲಿರುವ ಚರಾಕ್ಷರವನ್ನು ತೆಗೆಯಬೇಕು.)
ಬಲಭಾಗ = 3x+10-3x= 10
ಎಡಭಾಗ= 6x+4-3x = 3x+4
2 ನೇ ಸ್ವಯಂಸಿದ್ಧದಿಂದ, ಬಲಭಾಗ= ಎಡಭಾಗ.
ಹಂತ 2:
ಈಗ ಎಡಭಾಗದಲ್ಲಿರುವ 4 ನ್ನ ತೆಗೆಯಬೇಕು.ಆದ್ದರಿಂದ ಎರಡೂಬದಿಗಳಿಂದ 4ನ್ನ ಕಳೆಯಿರಿ
ಎಡಭಾಗ= 3x+4-4=3x
ಬಲಭಾಗ = 10-4 = 6
2 ನೇ ಸ್ವಯಂಸಿದ್ಧದಿಂದ, ಬಲಭಾಗ= ಎಡಭಾಗ.
ಹಂತ 3
ಎಡಭಾಗದ x ನ ಸಹಗುಣಕ 3ರಿಂದ ಎರಡೂ ಬದಿಗಳನ್ನ ಭಾಗಿಸಿ.
ಎಡಭಾಗ= 3x/3 =x
ಬಲಭಾಗ = 6/3 =2
4 ನೇ ಸ್ವಯಂಸಿದ್ಧದಿಂದ, ಬಲಭಾಗ= ಎಡಭಾಗ.
x=2
ಈಗ ಮೊದಲೆರಡು ಹಂತಗಳಲ್ಲಿ ನಾವೇನು ಮಾಡಿದ್ದೇವೆ?
ಮೊದಲು ಎರಡೂ ಬದಿಗಳಿಂದ 3xನ್ನ ಕಳೆದು, ನಂತರ ಸ್ಧಿರಾಂಕ 4ನ್ನ ಕಳೆದಿದ್ದೇವೆ.
ಇದರ ಅರ್ಥ: 3xನ್ನ ಮತ್ತು 4ರ ಸಂಕಲನದ ವಿಲೋಮ (-3x ಮತ್ತು-4) ನ್ನ ಎರಡೂ ಬದಿಗಳಿಗೆ ಕೂಡಿಸಿದ್ದು.
ಅಥವಾ 3x ನ ಚಿಹ್ನೆ ಬದಲಾವಣೆ ಮಾಡಿ, ಇನ್ನೊಂದು ಬದಿಗೆ ಹಾಕಿದ್ದೇವೆ.
ಅದೇರೀತಿ 4 ರ ಚಿಹ್ನೆ ಬದಲಾಯಿಸಿ ಇನ್ನೊಂದು ಬದಿಯಲ್ಲಿ ಬರೆದಿದ್ದೇವೆ.
ಈಗ ಹಂತಗಳನ್ನು ಕ್ರೋಢೀಕರಿಸುವಾ:
ಹಂತ |
ಹೇಳಿಕೆ |
ವಿವರಣೆ |
1 |
6x+4= 3x+10 |
ದತ್ತ ಸಮೀಕರಣ |
2 |
6x+4-3x =10 i.e. 3x+4 =10 |
ಬಲಭಾಗದಿಂದ ಎಡಭಾಗಕ್ಕೆ 3x ಚಿಹ್ನೆ ಬದಲಾಯಿಸಿಕೊಂಡು ಹೋಗಿದೆ.. |
3 |
3x= 10-4 i.e. 3x =16 |
4 ಎಡಭಾಗದಿಂದ ಬಲಭಾಗಕ್ಕೆ ಚಿಹ್ನೆ ಬದಲಾಯಿಸಿಕೊಂಡು ಹೋಗಿದೆ. |
4 |
x=2 |
ಸುಲಭರೂಪಕ್ಕೆ ತಂದಿದೆ(ಎರಡೂ ಬದಿಯನ್ನು 3 ರಿಂದ ಭಾಗಿಸಿದೆ) |
ತಾಳೆ
ಸಮೀಕರಣ (1) ರಲ್ಲಿ x ನ ಬದಲಾಗಿ 2 ನ್ನ ಆದೇಶಿಸಿ.
ಎಡಭಾಗ= 6*2+4 = 16
ಬಲಭಾಗ= 3*2+10 =16
ಬಲಭಾಗ= ಎಡಭಾಗ.=16 ; x=2 ಇದು ಸರಿಯಾದ ಉತ್ತರ.
ವ್ಯಾಖ್ಯೆ
ಯಾವ ಚರಾಕ್ಷರದ ಬೆಲೆಯನ್ನು ಸಮೀಕರಣದಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ, ಎರಡೂ ಕಡೆ (ಎಡಭಾಗ ಮತ್ತು ಬಲಭಾಗ) ಸಮವಾಗುವುದೋ, ಆ ಅವ್ಯಕ್ತ ಪದದ ಬೆಲೆಯನ್ನು ಕಂಡು ಹಿಡಿಯುವುದನ್ನು ‘ಸಮೀಕರಣದ ಪರಿಹಾರ (’‘solution’)ಕಂಡು ಹಿಡಿಯುವುದು ಎನ್ನುತ್ತೇವೆ. ಇದನ್ನೇ ‘ಸಮೀಕರಣ ಬಿಡಿಸುವುದು’ ಎಂತಲೂ ಕರೆಯುತ್ತೇವೆ.
ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ x =2 - ಇದು ಸಮೀಕರಣದ ಪರಿಹಾರ.ಈ ಮೇಲಿನ ಸಮೀಕರಣಕ್ಕೆ x=1 ಪರಿಹಾರವಲ್ಲ.ಏಕೆಂದರೆ 1ನ್ನು x ಸ್ಥಾನದಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ LHS = 10 ,RHS=13 ಆಗುತ್ತದೆ. ಹೀಗಾಗಿ LHS
ಸಮಸ್ಯೆ 1 : ಈ ಸಮೀಕರಣ ಬಿಡಿಸಿ (x ನ ಬೆಲೆ ಕಂಡು ಹಿಡಿ): 5*(2x-3) = 2*(3x-7)
ಪರಿಹಾರ:
ಹಂತ |
ಹೇಳಿಕೆ |
ವಿವರಣೆ |
1 |
5*(2x-3) = 2*(3x-7) |
ಪರಿಹಾರ |
2 |
10x -15 = 6x -14 |
ದತ್ತ ಸಮೀಕರಣ |
3 |
10x -6x= -14+15 |
ಸುಲಭರೂಪಕ್ಕೆ ತಂದಿದೆ. |
4 |
4x = 1:i,e x = 1/4 |
6x ಮತ್ತು 15 ಇವುಗಳನ್ನು ಚಿಹ್ನೆ ಬದಲಾಯಿಸಿ ಇನ್ನೊಂದು ಬದಿಗೆ ವರ್ಗಾಯಿಸಿದೆ. |
ತಾಳೆ
1/4 ನ್ನ x ದತ್ತ ಸಮೀಕರಣದಲ್ಲಿ ಆದೇಶಿಸಿ.
ಎಡಭಾಗ= 5*(2*1/4 -3) = 5*(1/2-3) = 5*(-5/2) = -25/2
ಬಲಭಾಗ= 2*(3*1/4-7) = 2*(3/4-7) = 2*(-25/4) = -25/2
ಎಡಭಾಗ= ಬಲಭಾಗ= -25/2, x =1/4 ಇದು ಸರಿಯಾದ ಪರಿಹಾರ.
ಸಮಸ್ಯೆ 2 : x ನ ಬೆಲೆ ಕಂಡುಹಿಡಿ .
= 1/2
ಪರಿಹಾರ:
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು ವರ್ಗಮಾಡಿ.
(x-2)/(x+1) = 1/4
ಅಡ್ಡ ಗುಣಕಾರ ಮಾಡಿ.
4(x-2) = x+1
i.e. 4x – 8 = x+1 (ಸುಲಭರೂಪಕ್ಕೆ ತಂದಿದೆ.)
i.e. 4x –x = 1+8 ( ವರ್ಗಾಯಿಸಿದೆ.)
i.e. 3x = 9
x=3
ತಾಳೆ:
xನ ಬೆಲೆ 3ನ್ನ ದತ್ತ ಸಮೀಕರಣದಲ್ಲಿ ಆದೇಶಿಸಿ. = 1/2
ಸಮಸ್ಯೆ 3: ಮೂರು ಅನುಕ್ರಮ ಸಮ ಸಂಖ್ಯೆಗಳ ಮೊತ್ತ 252. ಆದರೆ ಆ ಸಂಖ್ಯೆಗಳಾವುವು?
ಪರಿಹಾರ:
ಹಂತ 1 : ಮೊದಲ ಸಮ ಸಂಖ್ಯೆ x ಆಗಿರಲಿ
ಹಂತ 2 : ಮುಂದಿನ ಅನುಕ್ರಮ ಸಮ ಸಂಖ್ಯೆಗಳು = (x+2) ಮತ್ತು (x+4).
ಹಂತ 3 : x+(x+2)+(x+4) = 3x+6 = 252. (ದತ್ತ)
3x+6 = 252
3x = 252-6=246
x = 82
ಮೂರು ಅನುಕ್ರಮ ಸಮ ಸಂಖ್ಯೆಗಳು 82(=x),
84(=x+2)
86(=x+4)
ತಾಳೆ:
82, 84, 86 ಈ ಮೂರು ಅನುಕ್ರಮ ಸಮಸಂಖ್ಯೆಗಳನ್ನು ಕೂಡಿಸಿ. ಮೊತ್ತ = 252
ಸಮಸ್ಯೆ 4: ಒಂದು ಹಡಗು ಪ್ರವಾಹದ ದಿಕ್ಕಿನಲ್ಲಿ ಒಂದು ಬಂದರಿನಿಂದ ಇನ್ನೊಂದು ಬಂದರಿಗೆ 9 ಗಂಟೆಗಳಲ್ಲಿ ತಲಪುವುದು. ಪ್ರವಾಹದ ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ಅದೇ ದೂರವನ್ನು ಪ್ರಯಾಣ ಮಾಡಲು 10 ಗಂಟೆಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳುವುದು. ಪ್ರವಾಹದ ವೇಗ ಗಂಟೆಗೆ 1ಕಿ.ಮಿ. ಇದ್ದರೆ, ಎರಡು ಬಂದರುಗಳಿಗಿರುವ ದೂರವನ್ನು ಕಂಡು ಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
= 180 ಕಿ.ಮೀ. |
|
ತಾಳೆ:
ಪ್ರವಾಹದ ದಿಕ್ಕಿನಲ್ಲಿ ಹಡಗಿನ ವೇಗ= (ದೂರ/ಸಮಯ)- ಪ್ರವಾಹದ ವೇಗ= (180/9)-1 = (20-1) ಕಿ.ಮೀ./ಗಂ=19 ಕಿ.ಮೀ./ಗಂ
ಪ್ರವಾಹದ ವಿರುದ್ಧದಲ್ಲಿ ಹಡಗಿನ ವೇಗ= (ದೂರ/ಸಮಯ)+ ಪ್ರವಾಹದ ವೇಗ= (180/10) +1 = (18+1) ಕಿ.ಮೀ./ಗಂ=19 ಕಿ.ಮೀ./ಗಂ
ಈ ಮೇಲಿನಿಂದ ನಮ್ಮ ಪರಿಹಾರ ಸರಿಯಾಗಿದೆ ಎಂದು ತಿಳಿಯಬಹುದು.
ಸಮಸ್ಯೆ 5: ಒಂದು ಸಂಖ್ಯೆಯಲ್ಲಿ ಎರಡು ಅಂಕಿಗಳಿವೆ. ದಶಕಸ್ಥಾನದ ಅಂಕೆಯು ಏಕಸ್ಥಾನದ ಅಂಕದ ಎರಡರಷ್ಟಿದೆ. ಸಂಖ್ಯೆಯ ಅಂಕಗಳನ್ನು ಅದಲು ಬದಲು ಮಾಡಿದಾಗ ಬರುವ ಸಂಖ್ಯೆಯು ಮೂಲ ಸಂಖ್ಯೆಗಿಂತ 27 ಕಡಿಮೆ ಇದ್ದರೆ ಮೂಲ ಸಂಖ್ಯೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
1 ಸಂಖ್ಯೆಯ ಏಕ ಸ್ಥಾನದ ಅಂಕೆ x ಆಗಿರಲಿ. ದಶಕಸ್ಥಾನದ ಅಂಕೆಯು ಏಕಸ್ಥಾನದ ಅಂಕೆಯ 2 ರಷ್ಟಿರುವುದರಿಂದ, ದಶಕ ಸ್ಥಾನದ ಅಂಕೆ =2x. ಸಂಖ್ಯೆಯಲ್ಲಿ 2 ಅಂಕಿಗಳಿರುವುದರಿಂದ ಅದರ ಬೆಲೆ =10*ದಶಕ ಸ್ಥಾನದ ಅಂಕೆ+ ಏಕ ಸ್ಥಾನದ ಅಂಕೆ = 10*2x+x. =20x+x = 21 x -------------è (1) ಅಂಕಿಗಳನ್ನು ಅದಲು ಬದಲು ಮಾಡಿದಾಗ, ದಶಕ ಸ್ಥಾನದಲ್ಲಿ x ಬರುತ್ತದೆ, 2x ಏಕಸ್ಥಾನದಲ್ಲಿ ಬರುತ್ತದೆ. ಆಗ ಸಂಖ್ಯೆಯ ಬೆಲೆ = 10* ದಶಕ ಸ್ಥಾನದ ಅಂಕೆ + ಏಕಸ್ಥಾನದ ಅಂಕೆ. = 10*x+2x =10x+2x = 12 x --------------è ತಿರುಗಿಸಿದ ಸಂಖ್ಯೆ. ದತ್ತಾಂಶದಂತೆ, ಹೊಸ ತಿರುಗಿಸಿದ ಸಂಖ್ಯೆ = ಹಳೇ ಸಂಖ್ಯೆ – 27 10x+2x = 20x+x-27 12x = 21x-27 27 = 21x-12x(12x ಮತ್ತು 27ರ ಸ್ಥಾನ ಬದಲಿಸಿದಾಗ) 27 =9x x = 3. ಮೂಲ ಸಂಖ್ಯೆಯ ಬಿಡಿಸ್ಥಾನದ ಅಂಕೆ = 3, ಮೂಲ ಸಂಖ್ಯೆಯ ದಶಕಸ್ಥಾನದ ಅಂಕೆ = 3*2 = 6 ಮೂಲ ಸಂಖ್ಯೆ = 63 |
|
ತಾಳೆ:
ಮೂಲ ಸಂಖ್ಯೆ = 63
ಅಂಕೆಗಳನ್ನು ಅದಲು ಬದಲು ಮಾಡಿದಾಗ ಬರುವ ಸಂಖ್ಯೆ = 36(36 = 63 -27.)
ಇದು ದತ್ತಾಂಶಕ್ಕೆ ಸರಿಯಾಗಿದೆ.
ಸಮಸ್ಯೆ 6: ಒಂದು ಆಯತದ ಉದ್ದವು ಅಗಲಕ್ಕಿಂತ 4 ಸೆಂ.ಮೀ ಹೆಚ್ಚಿದೆ. ಸುತ್ತಳತೆಯು ಅಗಲಕ್ಕಿಂತ 11ಸೆಂ.ಮೀ. ಹೆಚ್ಚಿದ್ದಲ್ಲಿ ಆಯತದ ಉದ್ದ ಮತ್ತು ಅಗಲಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಹಂತ 1: ಆಯತದ ಅಗಲ x ಆಗಿರಲಿ. ಉದ್ದ = x+4.
ಆಯತದ ಸುತ್ತಳತೆ P = 2* ಉದ್ದ + 2* ಅಗಲ
= 2(x+4)+2x
= 2x+8+2x
P = 4x +8 --------------è (1)
ಆದರೆ ದತ್ತಾಂಶದಂತೆ, ಸುತ್ತಳತೆಯು ಅಗಲಕ್ಕಿಂತ 11ಸೆಂ.ಮೀ ಹೆಚ್ಚಿದೆ.
P = x+11 --------------è (2)
ಹಂತ 2 :
ಸಮೀಕರಣ (1) ಮತ್ತು (2) ರಿಂದ,
2x+8+2x = x+11
4x+8 = x+11
4x-x = 11-8(x ಮತ್ತು 8ರ ಸ್ಥಾನ ಬದಲಿಸಿದೆ.)
3x = 3
x = 1.
ಆಯತದ ಅಗಲ =11ಸೆಂ.ಮೀ., ಉದ್ದ = x+4 = 5 ಸೆಂ.ಮೀ.
ತಾಳೆ:
ಆಯತದ ಸುತ್ತಳತೆ P = 2* ಉದ್ದ + 2* ಅಗಲ
= 2*5+2*1
= 10+2
= 12 ಸೆಂ.ಮೀ
= 11 ಸೆಂ.ಮೀ +1 ಸೆಂ.ಮೀ
= 11 ಸೆಂ.ಮೀ + ಅಗಲ
ಸಮಸ್ಯೆ 7: ಒಂದು ಭಿನ್ನರಾಶಿಯಲ್ಲಿ ಅಂಶದ ಎರಡರಷ್ಟು ಛೇದಕ್ಕಿಂತ 2 ಹೆಚ್ಚಿದೆ.3ನ್ನ ಅಂಕ ಮತ್ತು ಛೇದ ಎರಡಕ್ಕೂ ಸೇರಿಸಿದಾಗ ಬರುವ ಭಿನ್ನರಾಶಿಯು 2/3 ಆದರೆ, ಮೂಲ ಭಿನ್ನರಾಶಿಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಹಂತ 1: ಭಿನ್ನರಾಶಿಯ ಅಂಶವು x ಆಗಿರಲಿ.
ಅಂಶದ ಎರಡರಷ್ಟು = ಛೇದಕ್ಕಿಂತ 2 ಹೆಚ್ಚು.
2x = ಛೇದ +2.
ಛೇದ= 2x-2
ಮೂಲ ಭಿನ್ನರಾಶಿ = x/2x-2
3 ನ್ನ ಛೇದಕ್ಕೆ ಕೂಡಿಸಿದಾಗ , ಹೊಸ ಛೇದ = (2x-2) +3=2x+1
3 ನ್ನ ಅಂಶಕ್ಕೆ ಕೂಡಿಸಿದಾಗ ಹೊಸ ಅಂಶ = x+3
ಹೊಸ ಭಿನ್ನರಾಶಿ = (x+3)/ (2x+1)
ದತ್ತಾಂಶದಂತೆ ಹೊಸ ಭಿನ್ನರಾಶಿ 2/3
ಹಂತ 2 : 2/3 = (x+3)/(2x+1) --------------è(1)
ಅಡ್ಡ ಗುಣಕಾರ ಮಾಡಿದಾಗ,
2*(2x+1) =3 (x+3) --------------è(2)
4x+2 =3x+9 (3x ಮತ್ತು 2 ನ್ನ ಪರಸ್ಪರ ವರ್ಗಾಯಿಸಿದೆ.)
4x-3x= 9-2
x= 7
ಮೂಲ ಭಿನ್ನರಾಶಿಯ ಛೇದ = 2x-2 =14-2=12
ಮೂಲ ಭಿನ್ನರಾಶಿ = 7/12
ತಾಳೆ:
ಮೂಲ ಭಿನ್ನರಾಶಿ = 7/12
3ನ್ನ ಅಂಕ ಮತ್ತು ಛೇದಗಳಿಗೆ ಕೂಡಿಸಿದಾಗ = 10/15 = 2/3 - ದತ್ತ
ಸಮಸ್ಯೆ 8: ದೊಡ್ಡಭಾಗವನ್ನು ಚಿಕ್ಕಭಾಗದಿಂದ ಭಾಗಿಸಿದಾಗ, ಭಾಗಲಬ್ಧ 2 ಮತ್ತು ಶೇಷ 5 ಆಗಿರುವಂತೆ, 32 ನ್ನ ಎರಡು ಭಾಗ ಮಾಡಿ..
ಪರಿಹಾರ:
ದೊಡ್ಡಭಾಗ = ಆಗಿರಲಿ ಚಿಕ್ಕಭಾಗ = 32-x ಭಾಜ್ಯ= ಭಾಗಲಬ್ಧ*ಭಾಜಕ ± ಶೇಷ.. x/(32-x) = 2+ 5(±ಶೇಷ.)ಒಂದು ಘನಾಕೃತಿಯ ಉದ್ದ.(5x+2 ಸೆಂ.ಮೀ., ಅಗಲ (5x-1) ಸೆಂ.ಮೀ., ಎತ್ತರ (5x+3) ಸೆಂ.ಮೀ.ಇದ್ದರೆ ಘನಫಲವನ್ನುಕಂಡುಹಿಡಿಯಿರಿ.
ಅಭ್ಯಾಸ: ಈ ಸಮೀಕರಣವನ್ನು ಬಿಡಿಸಿ(x =23 ,ಇನ್ನೊಂದು ಸಂಖ್ಯೆ = 9) |
ಸಮಸ್ಯೆ 9: x2-9/( x2+5) = -5/9 ಆಗಿರುವ ಸಮೀಕರಣದಲ್ಲಿ x ನ ಧನಾತ್ಮಕ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ದತ್ತಾಂಶದಂತೆ x2-9/( x2+5) = -5/9
ಅಡ್ಡ ಗುಣಾಕಾರ ಮಾಡಿದಾಗ 9(x2-9) = -5(x2+5)
ಸಂಕ್ಷೇಪಿಸಿದಾಗ 9x2-81 = -5x2 -25
ಸ್ಥಾನ ಬದಲಾಯಿಸಿದಾಗ 14x2 = 56
x2 = 4
x = +2 ಅಥವಾ -2
ತಾಳೆ:
ದತ್ತ ಸಮೀಕರಣದಲ್ಲಿ x=2 ನ್ನು ಆದೇಶಿಸಿದಾಗ, LHS = -5/9 = RHS, ಆದ್ದರಿಂದ ಇದು ಸರಿಯಾದ ಪರಿಹಾರ.
ಸಮಸ್ಯೆ 10: ದುಂಬಿಗಳ ಸಮೂಹದಲ್ಲಿ 1/5 ರ ಭಾಗ ಕದಂಬ ವೃಕ್ಷಕ್ಕೂ, 1/3 ನೇ ಭಾಗ ಶಿಲೀಂಧ್ರಕ್ಕೂ ಹೊರಟವು. ಅವೆರಡರ ವ್ಯತ್ಯಾಸದ ಮೂರರಷ್ಟು ಕುಟಜ ವೃಕ್ಷಕ್ಕೂ ಹೋದ ಮೇಲೆ ಉಳಿದ ಒಂದೇ ಒಂದು ದುಂಬಿಯು ಕೇತಕಮಾಲತೀ ಪುಷ್ಪದ ಸುಗಂಧದಿಂದ ಆಕರ್ಷಿಸಲ್ಪಟ್ಟು ಆಕಾಶದಲ್ಲಿ ಹಾರಾಡುತ್ತಿತ್ತು. ಹಾಗಾದರೆ ಎಲೈ ಲೀಲಾವತಿ, ದುಂಬಿಗಳ ಒಟ್ಟು ಸಂಖ್ಯೆಎಷ್ಟು? (ಲೀಲಾವತಿ ಶ್ಲೋಕ 56)
ಪರಿಹಾರ:
ಒಟ್ಟು ಸಂಖ್ಯೆ x ಇರಲಿ.
ಹಂತ |
ಎಲ್ಲಿಗೆ |
ಎಷ್ಟು |
1 |
ಕದಂಬಕ್ಕೆ |
(x/5) |
2 |
ಶಿಲೀಂಧ್ರಕ್ಕೆ |
(x/3) |
3 |
ಮೇಲಿನವುಗಳ ವ್ಯತ್ಯಾಸ |
(x/3) – (x/5) = (2x/15) |
4 |
ಕುಟಜಕ್ಕೆ |
3*(2x/15)=(2x/15) |
5 |
ಉಳಿದದ್ದು |
1 |
x- {(x/5)+(x/3)+(2x/5) =1
{15x-(3x+5x+6x)/15} =1
x=15
ತಾಳೆ:
ಕದಂಬಕ್ಕೆ 3, ಶಿಲೀಂಧ್ರಕ್ಕೆ 5, ಕುಟಜಕ್ಕೆ 6 { =3*(5-3)} ಉಳಿದದ್ದು 1
ಸಮಸ್ಯೆ 11:ಒಬ್ಬ ಯಾತ್ರಿಕನು ತನ್ನ ಹಣದ ಅರ್ಧ ಭಾಗವನ್ನು ಪ್ರಯಾಗದಲ್ಲಿಯೂ, ಉಳಿದುದರ 2/9 ಭಾಗವನ್ನು ಕಾಶಿಯಲ್ಲಿಯೂ, ಉಳಿದುದರ 1/4 ಭಾಗವನ್ನು ತೆರಿಗೆಗಳಿಗೂ, ಇನ್ನುಳಿದುದರ 6/10 ಭಾಗವನ್ನು ಗಯೆಯಲ್ಲಿಯೂಖರ್ಚುಮಾಡಿದ ನಂತರ ಉಳಿದ 63 ನಿಷ್ಕಗಳನ್ನು(ಹಣದ ಅಳತೆ) ಮನೆಗೆ ತಂದರೆ, ಯಾತ್ರೆಗೆ ತೆಗೆದು ಕೊಂಡು ಹೋದ ಹಣ ಎಷ್ಟು?(ಲೀಲಾವತಿ ಶ್ಲೋಕ 55)
ಪರಿಹಾರ:
ಒಟ್ಟು ಸಂಖ್ಯೆ x ಇರಲಿ.
ಹಂತ |
ಎಲ್ಲಿ/ಏತಕ್ಕೆ |
ಎಷ್ಟು |
ನಂತರ ಉಳಿದದ್ದು |
1 |
ಪ್ರಯಾಗ |
(x/2) |
x-(x/2) = (x/2) |
2 |
ಕಾಶಿ |
(2/9)*(x/2)=(x/9) |
(x/2)-(x/9) = (7x/18) |
3 |
ತೆರಿಗೆ |
(1/4)*(7x/18) =(7x/72) |
(7x/18) - (7x/72)= (21x/72) =(7x/24) |
4 |
ಗಯೆ |
(6/10)*(7x/24)=(7x/40) |
(7x/24)- (7x/40) ={(35x-21x)/120}=(7x/60) |
5 |
ಉಳಿದದ್ದು |
63 |
|
(7x/60) =63
x=540
ತಾಳೆ:
ನೀವೇ ಮಾಡಿ
ನಾವು ಈಗಾಗಲೇ ಕೆಲವು ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸಲು ಕಲಿತಿದ್ದೇವೆ.
ಉದಾ:
ಸಂ. |
ಬೀಜೋಕ್ತಿ |
ಅಪವರ್ತನಗಳು |
1 |
(p-q)2- 3(p-q) |
(p-q){(p-q)-3} |
2 |
2x(a-4b)+3y(a-4b) |
(a-4b)(2x+3y) |
3 |
m2(pq+r)+mn(pq+r)+ n2(pq+r) |
(pq+r) (m2+mn+ n2) |
ಪಾಠ 2.5 ರಲ್ಲಿ px2+mx +c ರೂಪದ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸಿದ್ದೇವೆ.
ನಿತ್ಯಸಮೀಕರಣಗಳು / ಸೂತ್ರಗಳನ್ನುಪಯೋಗಿಸಿ ಅಪವರ್ತಿಸುವುದು (Factorisation using identities/formulae):
ಪಾಠ 2.3 ರಲ್ಲಿ ಕೆಳಗಿನ ಸಮೀಕರಣಗಳನ್ನು ನೋಡಿದ್ದೇವೆ.
ಕ್ರ.ಸಂ. |
ಸಮೀಕರಣ |
ವಿಸ್ತರಣೆ |
ಅಪವರ್ತನಗಳು |
1 |
(a+b)2 |
a2+b2+2ab |
(a+b) ಮತ್ತು (a+b) |
2 |
(a-b)2 |
a2+b2-2ab |
(a-b) ಮತ್ತು (a-b) |
3 |
(a+b)(a-b) |
a2-b2 |
(a+b) ಮತ್ತು (a-b) |
4 |
(x+a)*(x+b) |
x2+x(a+b)+ab |
(x+a) ಮತ್ತು (x+b) |
ಸಮಸ್ಯೆ 1 : ನಿತ್ಯ ಸಮೀಕರಣವನ್ನುಪಯೋಗಿಸಿ ಅಪವರ್ತಿಸಿ 9p2+12pq +4q2
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿಯನ್ನು 9p2 +4q2+12pq. ಎಂದು ಬರೆಯುವಾ. ಇದು a2+b2+2ab ರೂಪದಲ್ಲಿದೆ. a2= 9p2 , b2= 4q2 , 2ab=12pq
9p2 = 3p*3p =(3p)2
4q2 = 2q*2q= (2q)2
12pq = 2*3p*2q
a=3p and b=2q
ದತ್ತ ಬೀಜೋಕ್ತಿಯನ್ನು a2+b2+2ab ರೂಪದಲ್ಲಿರುವುದರಿಂದ, ಅದರ ಅಪವರ್ತನಗಳು: (a+b) ಮತ್ತು (a+b)
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (3p+2q) ಮತ್ತು (3p+2q)
ತಾಳೆ:
(3p+2q)(3p+2q)
=3p(3p+2q)+2q(3p+2q) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿರಿ.)
=9p2+6pq +6qp+4q2 (ಸಂಕ್ಷೇಪಿಸಿದಾಗ.)
= 9p2+12pq +4q2 - ಇದು ದತ್ತ ಬೀಜೋಕ್ತಿ
ಸಮಸ್ಯೆ 2: ಸೂಕ್ತ ಸಮೀಕರಣದ ಸಹಾಯದಿಂದ 36x2-60x +25 ಅಪವರ್ತಿಸಿ.
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿ: 36x2 +25-60x. E°è a2= 36x2, b2= 25=52 ಮತ್ತು -2ab=-60x
(6x)2 +(5)2 -2*6x*5
ಇದು a2+b2-2ab ರೂಪದಲ್ಲಿದೆ. a=6x ,b=5.
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (a-b) ,(a-b).
= (6x-5) ಮತ್ತು (6x-5).
ತಾಳೆ:
(6x-5) (6x-5)
=6x(6x-5)-5(6x-5) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿರಿ.)
=36x2-30x -30x+25 (ಸಂಕ್ಷೇಪಿಸಿದಾಗ)
= 36x2-60x +25 - ದತ್ತ ಬೀಜೋಕ್ತಿ
ಸಮಸ್ಯೆ 3 : ಸೂಕ್ತ ಸಮೀಕರಣ ಉಪಯೋಗಿಸಿ ಅಪವರ್ತಿಸಿ: (x+2)2+18(x+2) +81.
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿ ಯನ್ನು ಹೀಗೆ ಬರೆಯುವಾ: (x+2)2 +81+18(x+2).
ಇದು a2+b2+2ab ರೂಪದಲ್ಲಿದೆ. a2= (x+2)2 , b2= 81=92
2ab=18(x+2)
a=(x+2),b=9 2ab = 2(x+2)*9 =18(x+2)
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: a2+b2+2ab ರೂಪದಲ್ಲಿರುವುದರಿಂದ ಅದರ ಅಪವರ್ತನಗಳು: (a+b) ಮತ್ತು (a+b)
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (x+2+9) (x+2+9)
=(x+11) ಮತ್ತು (x+11)
ತಾಳೆ:
(x+11) ನ್ನ (x+11) ರಿಂದ ಗುಣಿಸಿ, ದತ್ತ ಬೀಜೋಕ್ತಿಯನ್ನು ವಿಸ್ತರಿಸಿ, ತಾಳೆನೋಡಿ.
ಸಮಸ್ಯೆ 4: ಸೂಕ್ತ ಸಮೀಕರಣ ಉಪಯೋಗಿಸಿ ಅಪವರ್ತಿಸಿ: p4/16- q2/64
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿಯು a2-b2 ರೂಪದಲ್ಲಿದೆ.
a2= p4/16= (p2/4)2 , b2= q2/64 = (q/8)2
a=p2/4 ,b=q/8.
ದತ್ತ ಬೀಜೋಕ್ತಿಯು a2-b2 ರೂಪದಲ್ಲಿರುವುದರಿಂದ, ಅದರ ಅಪವರ್ತನಗಳು (a+b) ಮತ್ತು (a-b).
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (p2/4+q/8) ಮತ್ತು (p2/4-q/8).
ತಾಳೆ:
(p2/4+q/8)(p2/4-q/8)
=p2/4(p2/4-q/8)+q/8(p2/4-q/8) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿರಿ.)
=(p2/4)2-p2q/32 +qp2/32 –(q/8)2 (ಸಂಕ್ಷೇಪಿಸಿದಾಗ.)
= p4/16- q2/64 - ದತ್ತ ಬೀಜೋಕ್ತಿ
2.8.1 ಸಮಸ್ಯೆ 5: ನಿತ್ಯಸಮೀಕರಣದಿಂದ ಅಪವರ್ತಿಸಿ: 8(x+1/x)2-18(x-1/x)2
ಪರಿಹಾರ:
8 ಮತ್ತು 18 ಇವೆರಡೂ ಪೂರ್ಣವರ್ಗಗಳಲ್ಲ
ಆದರೆ 8 =2*4 , 18 =2*9.
4=22 9=33
8(x+1/x)2-18(x-1/x)2 = 2{4(x+1/x)2-9(x-1/x)2}.
ಈಗ 4(x+1/x)2-9(x-1/x)2 ಇದು a2-b2 ರೂಪದಲ್ಲಿದೆ.
a2= 4(x+1/x)2 =(2(x+1/x))2
b2=(3(x-1/x))2
ಈಗ a=2(x+1/x) , b=3(x-1/x)
ಬೀಜೋಕ್ತಿಯು a2-b2 ರೂಪದಲ್ಲಿರುವುದರಿಂದ, ಅಪವರ್ತನಗಳು (a+b) , (a-b)
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (2(x+1/x) + 3(x-1/x)) ಮತ್ತು (2(x+1/x) - 3(x-1/x))
ಇಲ್ಲಿ 2 ಸಾಮಾನ್ಯ ಅಪವರ್ತನ.
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: 2 , (2(x+1/x) + 3(x-1/x))
(2(x+1/x) - 3(x-1/x))
ಅಭ್ಯಾಸ: ತಾಳೆ ನೋಡಿ: 2(2(x+1/x) + 3(x-1/x))(2(x+1/x) - 3(x-1/x))= 8(x+1/x)2-18(x-1/x)2
ಸಮಸ್ಯೆ 6: ಎರಡು ಸಂಖ್ಯೆಗಳ ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸ 400. ಸಂಖ್ಯೆಗಳ ವ್ಯತ್ಯಾಸ 8 ಆದರೆ, ಸಂಖ್ಯೆಗಳು ಯಾವುವು? (ಲೀಲಾವತಿ: ಶ್ಲೋಕ 59)
ಸಂಖ್ಯೆಗಳು x,y ಆಗಿರಲಿ. ಆಗ
x2 -y2 =400
x-y= 8 ( x= y+8) ------(1)
x2 -y2 = (x+y)*(x –y) {a2-b2 =(a+b)*(a-b)}
= 8(x+y) ( x-y =8)
400 = 8(x+y) ( x2 -y2 =400)
(x+y) = 50 ( 8 ರಿಂದ ಭಾಗಿಸಿ)
y+8+y =50 ( (1) ರಂತೆ)
2y = 42 (ಸುಲಭೀಕರಿಸಿ)
y =21
x= 29 ( (1) ರಂತೆ)
ಅಭ್ಯಾಸ:
29-21 =8
292-212 = ??
(x+a)*(x+b) = x2+x(a+b)+ab - ಈಗಾಗಲೇ ನೋಡಿದ್ದೇವೆ.
ಈಗ ಮೂರು ದ್ವಿಪದೋಕ್ತಿಗಳು: (x+a)*(x+b)*(x+c) ಯ ಗುಣಲಬ್ಧ ನೋಡುವಾ.
(x+a)*(x+b)*(x+c)
= {(x+a)*(x+b)}*(x+c)
= {x2+x(a+b)+ab}*(x+c)
= x2(x+c)+x(a+b)*(x+c) + ab(x+c) ({x2+x(a+b)+ab} ರ ಪ್ರತೀ ಪದವನ್ನು (x+c) ಯ ಪ್ರತೀಪದದೊಂದಿಗೆ ಗುಣಿಸಿದೆ.)
= x3+ x2c + x(a+b)*x+x(a+b)*c + abx+abc ( x(a+b) ರ ಪ್ರತೀ ಪದವನ್ನು (x+c) ಯ ಪ್ರತೀಪದದೊಂದಿಗೆ ಗುಣಿಸಿದೆ.))
= x3+ x2c + x2(a+b)+x(a+b)*c + abx+abc ವಿಸ್ತರಿಸಿದಾಗ.)
= x3+ x2(c+a+b)+xac+xbc + abx+abc ವಿಸ್ತರಿಸಿ,ಸುಲಭೀಕರಿಸಿದಾಗ.)
= x3+ x2(a+b+c)+x(ac+bc+ ab)+abc ಸುಲಭೀಕರಿಸಿದಾಗ.)
= x3+ (a+b+c) x2+(ab+bc+ca)x+abc ಪುನರ್ಜೋಡಣೆ.)
ಮೇಲಿನ ಸಮೀಕರಣದಲ್ಲಿ b=a , c=a ಹಾಕುವಾ.
ಆಗ, (x+a)(x+a)(x+a) = x3+ (a+a+a) x2+(a*a+a*a+a*a)x+a*a*a
= x3+ 3ax2+3a2x+ a3
= x3+ 3ax(x+a)+ a3
ಈಗ x ನ್ನa ಯಿಂದಲೂ, a ಯನ್ನು b ಯಿಂದಲೂ (a+b)3 = a3+ 3ab(a+b)+ b3
‘b’ ಇರುವಲ್ಲಿ (–b) ಯನ್ನು ಆದೇಶಿಸಿದರೆ,
(a-b)3 = a3+ 3a*-b(a-b)+ (-b)3
= a3-3ab(a-b)-b3
ಸಮಸ್ಯೆ 1: 1.05*0.97*.98 ರ ಬೆಲೆ ಕಂಡುಹಿಡಿ
ಪರಿಹಾರ:
1.05 = 1+.05, 0.97 = 1-0.03 , 0.98 = 1-0.02.
x=1 and a=.05, b=-0.03 ಮತ್ತು c= -0.02
ದತ್ತಪದಗಳ ಗುಣಲಬ್ಧವನ್ನು (x+a)(x+b)(x+c) ರೂಪದಲ್ಲಿ ಬರೆಯಬಹುದು.
(x+a)(x+b)(x+c) = x3+ (a+b+c) x2+(ab+bc+ca)x+abc
1.05*0.97*.98
= 13+ (0.05-0.03-0.02) 12 +((0.05*-0.03) (–0.03* -0.02)(-0.02*0.05))1+ 0.05*-0.03*-0.02
= 1+ 0 12+(-0.0015+0.0006-0.0010)1+ 0.000030
= 1- 0.0019+0.00003 =0.998130
ತಾಳೆ:
ಕ್ಯಾಲ್ಕ್ಯುಲೇಟರ್ ಉಪಯೋಗಿಸಿ ತಾಳೆನೋಡಿ: 1.05*0.97*0.98 = 0.998130.
ಸಮಸ್ಯೆ 2 : ಒಂದು ಘನಾಕೃತಿಯ ಉದ್ದ.(5x+2 ಸೆಂ.ಮೀ., ಅಗಲ (5x-1) ಸೆಂ.ಮೀ., ಎತ್ತರ (5x+3) ಸೆಂ.ಮೀ.ಇದ್ದರೆ ಘನಫಲವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಘನಾಕೃತಿಯ ಗಾತ್ರ = ಉದ್ದ*ಅಗಲ*ಎತ್ತರ. ದತ್ತ ಘನಾಕೃತಿಯ ಗಾತ್ರ =(5x+2)(5x-1)(5x+3) ಘ.ಸೆಂ.ಮೀ. ಇದು (x+a)(x+b)(x+c) ರೂಪದಲ್ಲಿದೆ. x=5x , a=2, b=-1 , c=3 ಸೂತ್ರ: (x+a)(x+b)(x+c)= x3+ (a+b+c) x2+(ab+bc+ca)x+abc = (5x)3+ (2-1+3) (5x)2+(-2-3+6)(5x)+ 2*-1*3, = 125x3+ 100x2+5x-6 |
ತಾಳೆ:
xಗೆ ಒಂದು ಬೆಲೆ (=2) ಕೊಡುವಾ
ಆಗ,
1. 5x+2=5*2+2=12
2. 5x-1 =5*2-1=9
3. 5x+3 =5*2+3= 13
125x3+ 100x2+5x- 6 = 125*8+100*4+5*2-6
= 1000+400+10-6=1404
(5x+2)(5x-1)(5x+3)
=12*9*13 = 1404
ಘನಾಕೃತಿಯ ಘನಫಲ = ಉದ್ದ* ಅಗಲ*ಎತ್ತರ.
=12*9*13
= 1404 ಘ.ಸೆಂ.ಮೀ.
ಇದರಿಂದ (x+a)(x+b)(x+c)= x3+ (a+b+c) x2+(ab+bc+ca)x+abc ಎಂದು ತಿಳಿಯಬಹುದು,ಹಾಗೂ
1. (a+b+c) x2 x2 ನ ಸಹಗುಣಕ (a+b+c)
2. (ab+bc+ca)x ರಲ್ಲಿ x ನ ಸಹಗುಣಕ (ab+bc+ca) ಎಂದು ಗಮನಿಸಬಹುದು.
ಸಮಸ್ಯೆ 3: (3x-1)(3x-1)(3x+4) ರಲ್ಲಿ x2 ಮತ್ತು x ನ ಸಹಗುಣಕವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಗುಣಲಬ್ಧವು (x+a)(x+b)(x+c) ರೂಪದಲ್ಲಿದೆ. x=3x , a=-1, b=-1 , c=4
ಆದ್ದರಿಂದ ಗುಣಲಬ್ಧವನ್ನು (x+a)(x+b)(x+c) ರೂಪದಲ್ಲಿ ಬರೆಯಬಹುದು.
ಸೂತ್ರ:: (x+a)(x+b)(x+c)= x3+ (a+b+c) x2+(ab+bc+ca)x+abc
= (3x)3+(a+b+c)(3x)2 + (ab+bc+ca)(3x)+abc (x=3x ಎಂದು ಆದೇಶಿಸಿದಾಗ)
1.(a+b+c)(3x)2 ನಲ್ಲಿ x2 ನ ಸಹಗುಣಕ: (a+b+c)*9. a,b ,c ಗಳ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸಿದಾಗ,
(a+b+c)*9
= (-1-1+4)*9
= 18
2. (ab+bc+ca)(3x) ನಲ್ಲಿ x ನ ಸಹಗುಣಕ (ab+bc+ca)*3. a,b ,c ಗಳ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸಿದಾಗ,
(ab+bc+ca)*3
= (1-4-4)*3
= -21
ತಾಳೆ:
(3x-1)(3x-1)(3x+4) ನ್ನು ವಿಸ್ತರಿಸಿ ಸಹಗುಣಕಗಳನ್ನು ತಾಳೆನೋಡಿ.
ನಾವು ಈ ಹಿಂದೆ ಕಲಿತ ಸೂತ್ರ:
(a+b)3 = a3+ 3ab(a+b)+ b3
(a+b)3 -3ab(a+b) = a3+ b3(ವರ್ಗಾಯಿಸಿದೆ.)
i,e a3+ b3
=(a+b)3 -3ab(a+b)
= (a+b){ (a+b)2 -3ab}
= (a+b) { a2 +b2 +2ab -3ab}((a+b)2 ನ್ನು ವಿಸ್ತರಿಸಿದಾಗ.)
= (a+b) (a2 +b2 -ab)
‘b’ ಗೆ ಬದಲಾಗಿ (–b) ಯನ್ನು ಆದೇಶಿಸಿದಾಗ,
a3+ (-b)3 = (a+-b) (a2 +(-b)2 -a*(-b))
= (a-b) (a2 +b2 +ab)
ಆದರೆ, a3+ (-b)3= a3-b3
a3-b3= (a-b) (a2 +b2 +ab)
ಸಮಸ್ಯೆ 4: ಅಪವರ್ತಿಸಿ: 0.027 p3+0.008 q3
ಪರಿಹಾರ:
0.3*0.3*0.3=0.027 , 0.2*0.2*0.2=0.008
a3+b3=(a+b) (a2+b2-ab) ಸೂತ್ರದಲ್ಲಿ
a=0.3p , b= 0.2q
0.027 p3+0.008 q3
= (0.3p+0.2q) ((0.3p)2 +(0.2q)2 -0.3p*0.2q)
= (0.3p+0.2q) (0.09p2 +0.04q2 -0.06pq)
ತಾಳೆ:
(p ಮತ್ತು q ಗಳ ಒಂದು ಬೆಲೆಗೆ)
p=1 , q=1, ಆಗಿರಲಿ.
ಆಗ, (0.3p+0.2q) (0.09p2 +0.04q2 -0.06pq)
= 0.5*(0.09+0.04-0.06) = 0.5*0.07 = 0.035
ದತ್ತ ಬೀಜೋಕ್ತಿ: 0.027 p3+0.008 q3
=0.027+0.008 =0.035
ಎರಡೂ ವಿಧಾನಗಳಿಂದ ಫಲಿತಾಂಶ ಒಂದೇ ಇರುವುದರಿಂದ,ನಮ್ಮ ಪರಿಹಾರ ಸರಿಯಿದೆ ಎಂದು ತಿಳಿಯಬಹುದು
ಸಮಸ್ಯೆ 5: ಅಪವರ್ತಿಸಿ 125 -1/ a3b3
ಪರಿಹಾರ:
125 = 53 , 1/ a3b3=(1/ ab)3
a3-b3 ಸೂತ್ರದಲ್ಲಿ, ಇಲ್ಲಿ a=5 , b= 1/ab
a3-b3=(a-b) (a2 +b2 +ab) ಉಪಯೋಗಿಸಿ,a ಮತ್ತು b ಯ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸಿದಾಗ,
125 -1/ a3b3
= (5 -1/ab) (52 +(1/ab)2 +5*1/ab)
= (5 -1/ab) (25 +1/a2 b2 +5/ab)
ತಾಳೆ:
(a ಮತ್ತು bಗಳ ಒಂದು ಬೆಲೆಗೆ)
a=1 ,b=2, ಆಗಿರಲಿ.
(5 -1/ab) (25 +1/a2 b2 +5/ab)
=(5-1/2)(25+1/4+5/2) =124.875(ಕ್ಯಾಲ್ಕ್ಯುಲೇಟರನ್ನು ಉಪಯೋಗಿಸಿ.)
ದತ್ತ ಬೀಜೋಕ್ತಿ: 125 -1/ a3b3
= 125-1/8= 124.875 (ಕ್ಯಾಲ್ಕ್ಯುಲೇಟರನ್ನು ಉಪಯೋಗಿಸಿ.)
ಎರಡೂ ವಿಧಾನಗಳಿಂದ ಫಲಿತಾಂಶ ಒಂದೇ ಇರುವುದರಿಂದ,ನಮ್ಮ ಪರಿಹಾರ ಸರಿಯಿದೆ ಎಂದು ತಿಳಿಯಬಹುದು.
ಸಂ. |
ಸೂತ್ರ |
ವಿಸ್ತರಣೆ |
ಅಪವರ್ತನಗಳು |
1 |
(a+b)2 |
a2+b2+2ab |
(a+b) ಮತ್ತು (a+b) |
2 |
(a-b)2 |
a2+b2-2ab |
(a-b ಮತ್ತು (a-b) |
3 |
(a+b)(a-b) |
a2-b2 |
(a+b) ಮತ್ತು (a-b) |
4 |
(x+a)*(x+b) |
x2+x(a+b)+ab |
(x+a) ಮತ್ತು (x+b) |
5 |
(x+a)(x+b)(x+c) |
x3+ (a+b+c)x2+(ab+bc+ca)x+abc |
(x+a),(x+b) ಮತ್ತು (x+c) |
6 |
(a+b)3 |
a3+b3+3ab(a+b) |
(a+b),(a+b) ಮತ್ತು (a+b) |
7 |
(a-b)3 |
a3-b3-3ab(a-b) |
(a-b),(a-b) ಮತ್ತು (a-b) |
8 |
a3+b3 |
(a+b) (a2 +b2 -ab) |
(a+b) ಮತ್ತು (a2 +b2 -ab) |
9 |
a3-b3 |
(a-b) (a2 +b2 +ab) |
(a-b) ಮತ್ತು (a2 +b2 +ab) |
ಯಾವುದೇ ಬೀಜೋಕ್ತಿಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಲು ನಾವು ಭಾಗಾಕಾರ ಕ್ರಮವನ್ನು ಅನುಸರಿಸುವುದನ್ನು ಈಗಾಗಲೇ ಪಾಠ 2.5 ರಲ್ಲಿ ಕಲಿತಿದ್ದೇವೆ
ಸಮಸ್ಯೆ 1: (p+3)3, 2p3+54+18p(p+3), (p2+6p+9) ಇವುಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಹಂತ 1: ಎಲ್ಲಾ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಮೊದಲಿಗೆ ಅಪವರ್ತಿಸಿರಿ.
1. (p+3)3 – ಇದರ ಅಪವರ್ತನಗಳು: (p+3),(p+3) ಮತ್ತು (p+3)
2. ಈಗ 2ನೇ ಪದವನ್ನು ಅಪವರ್ತಿಸುವಾ.
2p3+54+18p(p+3)
= 2(p3+27)+18p(p+3)
= 2*(p+3)( p2+9-3p)+18p(p+3), [(p3+27) ಇದು a3+b3 ರೂಪದಲ್ಲಿದೆ. a=p , b=3, a3+b3 =(a+b) (a2 +b2 -ab)]
=(p+3)*((2*(p2+9-3p))+18p)
= (p+3) *2*( p2+9-3p+9p)
=2(p+3)( p2+9+6p) [ (p2+9+6p ಇದು ( a2+ b2+2ab) ರೂಪದಲ್ಲಿದೆ. a=p , b=3, ( a2+ b2+2ab)= (a+b)2 ]
= 2(p+3)(p+3)2
2p3+54+18p(p+3) ಯ ಅಪವರ್ತನಗಳು: 2, (p+3),(p+3),(p+3)
3. (p2+6p+9) =(p+3)2 -- (ಮೇಲೆ ನೋಡಿದೆ.)
(p2+6p+9) ಈ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (p+3)2
ಹಂತ 2: ಈಗ ಮ.ಸಾ.ಅ. ಮತ್ತು ಲ.ಸಾ.ಅ ನೋಡಲು ಭಾಗಾಕಾರ ಕ್ರಮವನ್ನು ಬಳಸಿ.
ದತ್ತ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಹೀಗೆ ಬರೆಯಬಹುದು: ( p+3)(p+3)(p+3), 2(p+3)(p+3)(p+3), (p+3)(p+3)
ಮೇಲಿನವುಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತನ ( p+3)ಆಗಿರುವುದರಿಂದ ( p+3)ನಿಂದಲೇ ಭಾಗಾಕಾರ ಮಾಡೋಣ
(p+3) | ( p+3)(p+3)(p+3), 2(p+3)(p+3)(p+3), (p+3)(p+3)
(p+3) | (p+3)(p+3), 2(p+3)(p+3), (p+3)
(p+3), 2(p+3) 1
ಇನ್ನು ಎಲ್ಲಾವುದಕ್ಕೂಸಾಮಾನ್ಯ ಭಾಜಕಗಳು ಇಲ್ಲ. ಆದ್ದರಿಂದ ಭಾಗಾಕಾರವನ್ನು ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
ಆದ್ದರಿಂದ ಮ.ಸಾ.ಅ = (p+3)(p+3)= (p+3)2
ಮತ್ತು
(p+3) | ( p+3)(p+3)(p+3), 2(p+3)(p+3)(p+3), (p+3)(p+3)
(p+3) | (p+3)(p+3), 2(p+3)(p+3), (p+3)
(p+3) | (p+3), 2(p+3) 1
1, 2, 1
ಇನ್ನು ಎಲ್ಲಾವುದಕ್ಕೂ ಸಾಮಾನ್ಯ ಭಾಜಕಗಳು ಇಲ್ಲದುದರಿಂದ ಭಾಗಾಕಾರ ಇಲ್ಲಿಗೇ ಮುಗಿಯಿತು.
ಲ.ಸಾ.ಅ = (p+3)(p+3)(p+3)*1*2*1 = 2(p+3)3
ತಾಳೆ:
p=2 ಬೆಲೆ ಆದೇಶಿಸಿ ತಾಳೆನೋಡುವಾ
ಮ.ಸಾ.ಅ = (p+3)2 = (2+3)2 =25
ಲ.ಸಾ.ಅ = 2(p+3)3= 2(2+3)3= 2*125=250
ದತ್ತ ಬೀಜೋಕ್ತಿಗಳು: (p+3)3 , 2p3+54+18p(p+3), (p2+6p+9)
(2+3)3, (2*23+54+18*2(2+3)), (22+6*2+9)
= {125, 250,25}
ಇವುಗಳ ಮ.ಸಾ.ಅ =25 , ಲ.ಸಾ.ಅ =250 ಪರಿಹಾರ ಸರಿಯಾಗಿದೆ.
ಸಮಸ್ಯೆ 2: 10(x2-y2), 15(x2-2xy+y2), 20(x3- y3), 5(-3x +3y) ಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಹಂತ 1: ಮೊತ್ತ ಮೊದಲಿಗೆ ದತ್ತ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸಬೇಕು.
1. ಮೊದಲ ಬೀಜೋಕ್ತಿ: 10(x2-y2) ಇದರಲ್ಲಿ (x2-y2) ವು (a2-b2) ರೂಪದಲ್ಲಿದೆ.
ಅದರ ಅಪವರ್ತನಗಳು: (a+b) (a-b):
10(x2-y2)=10(x+y)(x-y)
2. ಎರಡನೇ ಬೀಜೋಕ್ತಿ: 15(x2-2xy+y2)
ಇದರಲ್ಲಿ (x2-2xy+y2) ವು (a2-2ab+b2) ರೂಪದಲ್ಲಿದೆ. ಇದರ ಅಪವರ್ತನಗಳು (a-b) ಮತ್ತು (a-b)
15(x2-2xy+y2)= 15(x-y) (x-y)
3. ಮೂರನೇ ಬೀಜೋಕ್ತಿ: 20, (x3-y3): 20, (x-y), (x2 +y2 +xy)
4. ನಾಲ್ಕನೇ ಬೀಜೋಕ್ತಿ: 5*-3(x-y) = 5*(-3)(x-y)=-15, (x-y)
ಹಂತ 2: ಭಾಗಾಕಾರ ಕ್ರಮವನ್ನು ಬಳಸಿ.
ಇಲ್ಲಿ ಅಪವರ್ತನಗಳು 5 ಮತ್ತು (x-y) ಆಗಿರುವುದರಿಂದ ಇವೆರಡರಿಂದ ಜೊತೆಯಾಗಿ ಭಾಗಾಕಾರ ಮಾಡೋಣ.
5 (x-y) | 10(x+y) (x-y), 15(x-y) (x-y), 20(x-y)(x2 +y2 +xy), -15(x-y)
2(x+y), 3(x-y), 4(x2 +y2 +xy), -3
ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳು ಇನ್ನಿಲ್ಲ.
ಮ.ಸಾ.ಅ = 5(x-y)
ಈಗ ಲ.ಸಾ.ಅ ಕಂಡು ಹಿಡಿಯಲು ಪುನ: 5(x-y) ರಿಂದ ಭಾಗಿಸಬೇಕು.
5(x-y) | 10(x+y) (x-y), 15(x-y) (x-y), 20(x-y)(x2 +y2 +xy), -15(x-y)
2| 2(x+y), 3(x-y), 4(x2 +y2 +xy), -3 (ಸಾಮಾನ್ಯ ಪದಗಳು ಇರುವರೆಗೂ ನಾವು ಭಾಗಾಕಾರ ಮಾಡೋಣ.)
3| (x+y), 3(x-y), 2(x2 +y2 +xy), -3
(x+y), (x-y), 2(x2 +y2 +xy) -1
ಲ.ಸಾ.ಅ =5(x-y)* 2*3*(x+y)*(x-y)*2(x2 +y2 +xy)
= 60*(x-y)(x+y)*(x-y)(x2 +y2 +xy) ( (x-y)(x2 +y2 +xy) ವು (a-b)( (a2 +b2 +ab) ರೂಪದಲ್ಲಿದೆ ಮತ್ತು a=x and b= y)
= 60*(x2-y2)* (x3-y3)
ತಾಳೆ:
x=3 , y=2 ಬೆಲೆ ಆದೇಶಿಸಿ ತಾಳೆನೋಡುವಾ
ಮ.ಸಾ.ಅ = 5(x-y) = 5*(3-2) = 5
ಲ.ಸಾ.ಅ = 60*(x2- y2)* (x3-y3)
= 60*(9-4)*)(27-8)
=60*5*19=5700
ಈಗ ಬೀಜೋಕ್ತಿಗಳು:
10(x2-y2), 15(x2-2xy+y2) 20(x3- y3),5(-3x +3y)
10(32-22), 15(32-2*3*2+22), 20(33- 23),5(-3*3 +3*2)
= {50, 15, 380, -15}
ಈ ಪದಗಳ ಮ.ಸಾ.ಅ =5
ಲ.ಸಾ.ಅ ಕಂಡು ಹಿಡಿಯಲು ಭಾಗಾಕಾರ ಮಾಡುವಾ.
5 | 50,15,380,-15
2 | 10,3,76,-3
3 | 5,3,38,-3
| 5,1,38,-1
ಲ.ಸಾ.ಅ = 5*2*3*5*38=5700 ಪರಿಹಾರ ಕಾರ್ಯ ಸರಿಯಾಗಿದೆ.
ಸಮಸ್ಯೆ 3 : ಯಾವ a ಮತ್ತು b ಬೆಲೆಗಳಿಗೆ ಕೆಳಗಿನ ಬೀಜೋಕ್ತಿಗಳಲ್ಲಿ
p(x) = (x2+3x+2) (x2+2x+a), q(x) = (x2+7x+12) (x2+7x+b)
(x+1)(x+3) ಅವುಗಳ ಮ.ಸಾ.ಅ ಆಗಿರುತ್ತದೆ.
ಪರಿಹಾರ:
(x2+3x+2) = (x+1)(x+2)
(x2+7x+12) = (x+4)(x+3)
p(x) = (x+1)(x+2)(x2+2x+a)
q(x) = (x+4)(x+3) (x2+7x+b)
ದತ್ತದಂತೆ (x+1)(x+3) p(x), ನ ಮ.ಸಾ.ಅ ಆಗಿರುವುದರಿಂದ
(x2+2x+a) ರ ಅಪವರ್ತನ (x+3) ಇರಲೇ ಬೇಕು
I.e. x=-3 ಎಂದು ಆದೇಶಿಸಿದಾಗ ಸಮೀಕರಣ (x2+2x+a) =0 ಆಗಲೇ ಬೇಕು
(-3)2+2(-3)+a =0
I.e. 9-6+a =0
a =-3
ದತ್ತದಂತೆ (x+1)(x+3) ರ ಮ.ಸಾ.ಅ q(x), ಆಗಿರುವುದರಿಂದ
(x2+7x+b) ರ ಅಪವರ್ತನ (x+1)
I.e. x=-1 ಎಂದು ಆದೇಶಿಸಿದಾಗ ಸಮೀಕರಣ (x2+7x+b) =0 ಆಗಲೇ ಬೇಕು
(-1)2+7(-1)+b =0
I.e. 1-7+b =0
b =6
ತಾಳೆ:
a ಮತ್ತು b ಯ ಬೆಲೆಗಳನ್ನು p(x) ಮತ್ತು q(x) ದಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ,
p(x) = (x2+3x+2) (x2+2x-3) = (x+1) (x+2) (x+3) (x-1) { (x2+2x-3) = (x+3)(x-1)}
q(x) =(x2+7x+12) (x2+7x+6) = (x+4) (x+3) (x+1) (x+6) { (x2+7x+6)= (x+1)(x+6)}
p(x) ಮತ್ತು q(x) ರ ಅಪವರ್ತನಗಳನ್ನು ನೋಡಿದಾಗ p(x) ) ) ಮತ್ತು q(x) ರ ಮ.ಸಾ.ಅ (x+1) (x+3) ಆಗಿದೆ ಎಂದು ತಿಳಿಯಬಹುದು.
ಯಾವುದೇ ಸಂಖ್ಯೆಗೆ: ಭಾಜ್ಯ = (ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ.
ಈ ಮೇಲಿನ ಸಂಬಂಧ ಬಹುಪದಗಳಿಗೂ ಅನ್ವಯಿಸುತ್ತದೆ.
ಸಮಸ್ಯೆ 1: 12m3 ನ್ನು 4 m2 n ನಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
ಹಂತ 1: 12m3 n5 / 4 m2 n = (12/4)* (m3 n5 /m2 n)
ಹಂತ 2: 12/4 = 3,
ಹಂತ 3:
m3 n5/ m2 n = m3-2 n5-1 = m n4
12m3 n5 /4 m2 n = 3 m n4
ತಾಳೆ:
(ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ = 4 m2 n*3 m n4 +0 =12 m2+1 n1+4 =12m3 n5 - ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 2 : 57x2y2z2 ನ್ನು 19xyz ನಿಂದ ಭಾಗಿಸಿ.
ಹಂತ 1 :
57x2y2z2 /19xyz = (57/19) * (x2y2z2)/xyz
ಹಂತ 2:
57/19 =3
ಹಂತ 3:
x2y2z2/xyz = x2-1y2-1z2-1 = xyz
57x2y2z2 /19xyz = (57/19) * (x2y2z2)/xyz =3xyz
ತಾಳೆ:
(ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ = (3xyz * 19xyz) +0 = (3*19)*xyz*xyz +0= 57x1+1y1+1z1+1+0=57x2y2z2 - ಭಾಜ್ಯ
ಈ ಮೇಲಿನ ಸಮಸ್ಯೆಯಲ್ಲಿ ಗಮನಿಸಬೇಕಾದ ಅಂಶಗಳು:
3 ಎನ್ನುವುದು 57/19 ಅಂದರೆ ಏಕ ಪದಗಳ ಸಹಗುಣಕಗಳ ಭಾಗಲಬ್ಧ.
ಅದೇರೀತಿ xyz ಎಂಬುದು ಚರಾಕ್ಷರಗಳ ಭಾಗಲಬ್ಧ..
ಭಾಗಲಬ್ಧವು ಎರಡು ಭಾಗಗಳನ್ನು ಹೊಂದಿದೆ - ಸಂಖ್ಯಾ ಸಹಗುಣಕ ಮತ್ತು ಚರಾಕ್ಷರಗಳು. ಇದನ್ನು ಪಡೆಯುವುದು ಹೇಗೆ?
1. ಎರಡು ಏಕಪದಗಳ ಭಾಗಲಬ್ಧದ ಸಹಗುಣಕವು ಆ ಎರಡು ಏಕಪದಗಳ ಸಂಖ್ಯಾ ಸಹಗುಣಕಗಳ ಭಾಗಲಬ್ಧಕ್ಕೆ ಸಮ.
2. ಎರಡು ಏಕಪದಗಳ ಭಾಗಲಬ್ಧದ ಚರಾಕ್ಷರ ಭಾಗವು ಆ ಎರಡು ಏಕಪದಗಳ ಚರಾಕ್ಷರಗಳ ಭಾಗಲಬ್ಧವೇ ಆಗಿರುತ್ತದೆ.
ಬಹುಪದವನ್ನು ಏಕಪದದಿಂದ ಭಾಗಿಸುವುದು (Division of a Polynomial by a Monomial):
ಸಮಸ್ಯೆ 1: 4023m2n2-6032m2n -8042m3 ಈ ಬೀಜೋಕ್ತಿಯನ್ನು (-2012m2) ದಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
4023= (2x201)3= (2)3x(201)3, 6032 = (3x201)2 = (3)2x(201)2, 8042 = (4x201)2 = (4)2x(201)2
[4023m2n2-6032m2n -8042m3 n4]/(-2012m2)
=[(2)3*(201)3 m2n2-(3)2*(201)2 m2n -(4)2*(201)2m3 n4]/(-2012m2)
= -[ (2)3*(201) n2-(3)2* n -(4)2*m1 n4] = - (8*201* n2-9n -16mn4)
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = (-2012m2)*[-(8*201* n2+9n +16mn4)]+0
= +(2012m2)*(8*201* n2 -2012m2*9n -2012m2*16mn4) +0
= 8*2013m2 n2 -9*2012m2+2n-16*2012m2+1n4)
= 23* 2013m2 n2 - 32 *2012m4n-42*2012 m3 n4
= (2*201)3m2n2-(3*201)2 m2n –(4*201)2 m3 n4
= 4023 m2n2 - 6032 m2n - 8042 m3 n4
= ಭಾಜ್ಯ.
ಸಮಸ್ಯೆ 2 : 2a4 b3+ 8a2 b2 ವನ್ನು 2ab ಯಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
(2a4 b3+ 8a2 b2)/2ab = (2a4 b3/2ab) + (8a2 b2 / 2ab) = a3 b2 +4a b
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = 2ab*(a3 b2 +4a b) +0= 2a4 b3+ 8a2 b2 = ಭಾಜ್ಯ
1. ಬಹುಪದದ ಪ್ರತೀ ಪದವನ್ನು ಏಕಪದದಿಂದ ಭಾಗಿಸಿ.
2. ಈ ರೀತಿ ಪಡೆದ ಭಾಗಲಬ್ಧಗಳನ್ನು ಒಟ್ಟಿಗೆ ಸೇರಿಸಿ.(ಸೂಕ್ತ ಚಿಹ್ನೆಯಿಂದ).
1:ಮೊತ್ತ ಮೊದಲಿಗೆ 7+x3-6x (ತ್ರಿಪದ)ವನ್ನ ಒಂದು ದ್ವಿಪದ x+1 ರಿಂದ ಭಾಗಿಸುವಾ.
ಪರಿಹಾರ:
ಭಾಜ್ಯವು 3ನೇ ಘಾತದ ಬೀಜೋಕ್ತಿ, ಭಾಜಕವು 1ನೇ ಘಾತದ ದ್ವಿಪದ.
ಹಂತ |
ವಿಧಾನ |
|
1 |
ಭಾಜ್ಯ ಮತ್ತು ಭಾಜಕಗಳನ್ನು ಅವುಗಳ ಘಾತ ಸೂಚಿಯ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿ ಬರೆಯಿರಿ. |
|
2 |
ಯಾವುದೇ ಘಾತದ ಬೀಜ ಪದ ಇಲ್ಲದಿದ್ದರೆ ಸಹಗುಣಕ ‘0’ ಹಾಕಿ, ಬರೆಯಿರಿ x3 -6x+7 ನ್ನು (x3 +0x2-6x+7) ಎಂದು ಬರೆಯಿರಿ. |
|
3 |
ಭಾಜ್ಯದ ಮೊದಲ ಪದವನ್ನು ಭಾಜಕದ ಮೊದಲ ಪದದಿಂದ ಭಾಗಿಸಿ ( x3/x = x2). ಆದ್ದರಿಂದ x2 ವು ಭಾಗಲಬ್ಧ ಮೊದಲನೇ ಪದ ಇದನ್ನು ಮೇಲ್ತುದಿಯಲ್ಲಿ ಬರೆಯಿರಿ. |
|
4 |
ಭಾಜಕವನ್ನು ಭಾಗಲಬ್ಧ ಮೊದಲ ಪದ (x2) ರಿಂದ ಗುಣಿಸಿ, ಭಾಜ್ಯದ ಕೆಳಗೆ ಬರೆಯಿರಿ (=x3+ x2) |
|
5 |
ಹಂತ 4 ರಲ್ಲಿ ಬಂದ ಉತ್ತರವನ್ನು ಭಾಜ್ಯದಿಂದ ಕಳೆಯಿರಿ.( x3 +0x2 ) – (x3+ x2) = - x2 |
|
6 |
ಭಾಜ್ಯದ ಮುಂದಿನ ಪದವನ್ನು ತೆಗೆದುಕೊಂಡು,(=-6x) ಹಂತ 5ರ ಉತ್ತರದ ಮುಂದೆ ಬರೆಯಿರಿ. ಆಗ -x2 – 6x. ಇದು ಹೊಸ ಭಾಜ್ಯ. |
|
7 |
ಹಂತ 3 ರಿಂದ 6 ರವರೆಗಿನದ್ದನ್ನು ಪುನರಾವರ್ತಿಸಿ, ಭಾಗಾಕಾರವನ್ನು ಮುಂದುವರಿಸಿ |
|
8 |
ಶೇಷದ ಘಾತ ಸೂಚಿಯು ಭಾಜಕದ ಘಾತ ಸೂಚಿಗಿಂತ ಕಡಿಮೆಯಾದಾಗ ಭಾಗಾಕಾರ ಕ್ರಿಯೆ ನಿಲ್ಲಿಸಿ. |
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = (x+1)* (x2-x-5)+12
= x*(x2-x-5) +1*(x2-x-5)+12
= (x3-x2-5x)+ (x2-x-5)+12 = x3-x2+ x2-5x-x -5+12
= x3-0x2-6x +7
= x3-6x +7 – ಇದು ದತ್ತ ಭಾಜ್ಯ.
ಸಮಸ್ಯೆ 2: x5 -9x2 +12x-14 ದಿಂದ x -3 ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
ಭಾಜ್ಯವು ಘಾತಾಂಶದ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿಯೇ ಇದೆ. ಆದರೆ ಬಹುಪದದಲ್ಲಿ ಇಲ್ಲದ x ನ ಘಾತಾಂಕಗಳನ್ನು ಸೊನ್ನೆ ಸಹಗುಣಕ ಸೇರಿಸಿ ಬರೆಯಬೇಕು.
xಭಾಜ್ಯ: x5 +0x4 +0x3-9x2 +12x-14.
ಭಾಜಕವು ಘಾತಾಂಕದ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿಯೇ ಇದೆ.
- | x5 -3x4
- |3x4 +0x3
- |3x4 -9x3
- |9x3 -9x2
- |9x3 -27x2
- |18x2+12x
- |18x2 -54x
-|66x-14
-|66x-198
184
ತಾಳೆ:
ಭಾಗಲಬ್ಧವನ್ನು ಭಾಜ್ಯದಿಂದ ಗುಣಿಸಿ, ಶೇಷವನ್ನು ಕೂಡಿಸಿ ತಾಳೆ ನೋಡಬಹುದು. ಆದರೆ ಬೀಜೋಕ್ತಿಯು ತುಂಬಾ ದೊಡ್ಡದಿರುವುದರಿಂದ, ತಾಳೆ ನೋಡಲು ಬೇರೆ ವಿಧಾನ ಬಳಸುವಾ.
x=2 ಆದಾಗ ಫಲಿತಾಂಶವನ್ನು ನೋಡುವಾ.
x=2 ಆದಾಗ,
ಭಾಜಕ =x5 -9x2 +12x-14 = 25 -9*22 +12*2-14
= 32-36+24-14
= 6
ಭಾಜಕ = x-3 =2-3 = -1
ಭಾಗಲಬ್ಧ =
= 24 +3*23 +9*22+18*2+66
= 16+24+36+66=178
ಈಗ,
ಭಾಗಲಬ್ಧ*ಭಾಜಕ + ಶೇಷ = 178*-1+184
= -178+184
= 6 - ದತ್ತ ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 3: (6p3 -19p2 -8p) ಯನ್ನು (p2 -4p+2) ರಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
6p+5
p2 -4p+2
( -) |6p3 -24p2 +12p --à ---- (1) {= 6p*(p2 -4p+2)}
(=) |+5 p2 -20p --à -----(2) {ಸಮೀಕರಣ (1) ನ್ನು ಭಾಜ್ಯದಿಂದ ಕಳೆಯಿರಿ}
( -) | 5p2 - 20p+10 --à -----(3) {= 5*(p2 -4p+2)}
(=) -10 --à ಶೇಷ {ಸಮೀಕರಣ (3) ರಿಂದ (2)ನ್ನು ಕಳೆಯಿರಿ. }
ತಾಳೆ:
ಭಾಗಲಬ್ಧ*ಭಾಜಕ = (6p+5)* (p2 -4p+2)
= 6p* p2 +6p*-4p+6p*2+5* p2+5*-4p+5*2
= 6p3 -24p2+12p+5p2-20p+10
= 6p3 -19p2-8p+10
ಭಾಗಲಬ್ಧ*ಭಾಜಕ + ಶೇಷ = (6p3 -19p2-8p+10)-10
= 6p3 -19p2-8p - ದತ್ತ ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 4: a5 +b5 ನ್ನು (a+b) ಯಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
a+b
(-) |a5+ a4b
(=) - a4b+0
(-) |a4b-a3b2
(=) a3b2+0
(-) | a3b2+ a2b3
(=) - a2b3+0
(-) |-a2b3-ab4
(=) ab4 + b5
(-) |ab4 + b5
(=) 0
ಅಭ್ಯಾಸ: ಭಾಜಕ*ಭಾಗಲಬ್ಧ+ಶೇಷ = ಭಾಜ್ಯ ಆಗುವುದೋ ಎಂದು ನೋಡಿ.
ಕೆಳಗೆ ನೀಡಿರುವ ನಿಜಜೀವನದ ಉದಾಹರಣೆಗಳನ್ನು ಗಮನಿಸಿ:
ಉದಾ 1 : 180 ಜನರು ಪ್ರತಿದಿನ 10 ಗಂಟೆ ಕೆಲಸ ಮಾಡಿ 6 ದಿನಗಳಲ್ಲಿ 60m ಉದ್ದದ 1m ಅಗಲದ 1m ಆಳದ ಕಾಲುವೆಯನ್ನು ತೋಡುತ್ತಾರೆ. 100 ಜನರು ದಿನಕ್ಕೆ 8 ಗಂಟೆ ಕೆಲಸಮಾಡಿ, 100m ಉದ್ದದ 1.5m ಅಗಲದ 1.2mಆಳದ ಕಾಲುವೆಯನ್ನು ಎಷ್ಟು ದಿನಗಳಲ್ಲಿ ತೋಡುತ್ತಾರೆ?
ಉದಾ 2 : ಒಂದು ವಸ್ತುವಿನ ತೂಕವು ಭೂಮಿಯ ಕೇಂದ್ರದಿಂದಿರುವ ಅಂತರದ ವರ್ಗಕ್ಕೆ ವಿಲೋಮವಾಗಿರುವುದು. ಭೂಮಿಯ ಸರಿಸುಮಾರು ತ್ರಿಜ್ಯ 6380 KM ಆದರೆ 80 KG ದ್ರವ್ಯರಾಶಿಯ ವ್ಯಕ್ತಿಯು ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ 1600 KM ಎತ್ತರದಲ್ಲಿ ಎಷ್ಟು ತೂಗುತ್ತಾನೆ?
ಮೇಲಿನಂತಹ ಸಮಸ್ಯೆಗಳನ್ನು ಬಗೆಹರಿಸುವುದು ಹೇಗೆ?
ಮಾರ್ಪು ಎಂದರೆ ಬದಲಾವಣೆ. ನಮ್ಮ ಕಾಲದಲ್ಲಿ ಹೀಗಿರಲಿಲ್ಲ, ಈಗ ಬಹಳ ಬದಲಾವಣೆಯಾಗಿದೆ ಎಂದು ಕೆಲವರು ಹೇಳುವುದನ್ನು ಕೇಳುತ್ತಿರುತ್ತೇವೆ. ನಮ್ಮಕಾಲದಲ್ಲಿ ಒಂದು ಕೇಜಿ ಅಕ್ಕಿಗೆ ಹಲವು ಆಣೆಗಳಿಗೆ ಸಿಗುತ್ತಿತ್ತು. ಈಗಲೋ ಹಲವು ಹತ್ತು ರೂಗಳಾಗಿವೆ. ಬದುಕುವುದೇ ಕಷ್ಟ. ಹಾಗಾದರೆ ಕಾಲ ಕಳೆದಂತೆ ಅಕ್ಕಿಯ ಬೆಲೆ ಏರುತ್ತಲೇ ಹೋಗಿದೆಯೇ? ಇಲ್ಲ. ಅದು ಇಳಿದುದೂ ಉಂಟು. ಅಕ್ಕಿ, ಚಿನ್ನ ಹಾಗೇ ಪೆಟ್ರೋಲ್ ಬೆಲೆ ಕಾಲಕಳೆದಂತೆ ಹೆಚ್ಚಾಗುತ್ತಲೇ ಹೋಗಿಲ್ಲ. ಆದುದರಿಂದ ಬೆಲೆಗಳ ಏರಿಕೆಗೂ ಕಾಲಕ್ಕೂ ನೇರ ಸಂಬಂಧ ಇಲ್ಲ ಎಂದಾಯಿತು. ಅದೇ ರೀತಿ ವ್ಯಕ್ತಿಯ ಎತ್ತರಕ್ಕೂ ಆತನ ವಯಸ್ಸಿಗೂ ನೇರ ಸಂಬಂಧ ಇದೆಯೇ? ಆರಂಭದಲ್ಲಿ ಅದು ಹೆಚ್ಚಾಗುತ್ತಾ ಹೋದರೂ, ಒಂದು ಹಂತದಲ್ಲಿ( 16-17ವರ್ಷ) ಹೆಚ್ಚುವುದು ನಿಲ್ಲುತ್ತದೆ ಅಲ್ಲವೇ? ಅಂದರೆ ಎತ್ತರಕ್ಕೂ ವಯಸ್ಸಿಗೂ ನೇರ ಸಂಬಂಧ ಇಲ್ಲವೆಂದಾಯಿತು.
ಹಾಗಾದರೆ ಸಮಯಕ್ಕನುಗುಣವಾಗಿ ಏರಿಕೆಯಲ್ಲಿ/ಇಳಿತದಲ್ಲಿ ನೇರ ಸಂಬಂಧ ಇರುವಂತಹದೇನಾದರೂ ಇದೆಯೇ? ಇದೆ. ಚಲಿಸುತ್ತಿರುವ ಟ್ರೈನ್ ಅಥವಾ ಬಸ್ಸು ಕ್ರಮಿಸುವ ದೂರ, ಅದರ ಜವವನ್ನು ಅನುಸರಿಸಿ ಸಮಯಕ್ಕನುಗುಣವಾಗಿ ನೇರವಾಗಿ ಹೆಚ್ಚಾಗುತ್ತದೆ. ನಮಗೆ ತಿಳಿದಂತೆ ಕ್ರಮಿಸಿದ ದೂರ= ಜವ*ಸಮಯ. ಅಥವಾ d=st. ಸಮಯ ಕಡಿಮೆಯಾದಾಗ ಕ್ರಮಿಸಿದ ದೂರ ಕಡಿಮೆಯಾಗುತ್ತದೆ. ಇಂತಹ ಸಂದರ್ಭದಲ್ಲಿ ಕ್ರಮಿಸಿದ ದೂರವು ಸಮಯದೊಂದಿಗೆ ನೇರ ಅನುಪಾತವನ್ನು ಹೊಂದಿದೆ ಎಂದು ಹೇಳುತ್ತೇವೆ. ಹಾಗೇ dt ಎಂದು ಸೂಚಿಸುತ್ತೇವೆ. d/t = k ಎನ್ನುವುದು ಸ್ಥಿರಾಂಕ( ಇಲ್ಲಿ ಜವ) ಆಗಿರುವುದನ್ನೂ ಗಮನಿಸಿ. ಯನ್ನು ಅನುಪಾತೀಯ ಸ್ಥಿರಾಂಕ('constant of proportionality' ) ಎಂದು ಕರೆಯುತ್ತೇವೆ. ಹಾಗೆಯೇ d ಮತ್ತು t ಗಳು ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ಗಳಾಗಿವೆ. ಅವಧಿ ಮತ್ತು ಬಡ್ಡಿಯ ದರ ನಿಗದಿಯಾಗಿರುವಾಗ ಠೇವಣಿ ಮೇಲೆ ಬ್ಯಾಂಕ್ ನೀಡುವ ಬಡ್ಡಿಯು ಅಥವಾ ಸಾಲದ ಮೇಲೆ ಬ್ಯಾಂಕ್ ವಸೂಲಿ ಮಾಡುವ ಬಡ್ದಿಯು ಠೇವಣಿ ಹಣ ಅಥವಾ ಸಾಲದ ಹಣದ ಮೇಲೆ ನೇರ ಅನುಪಾತವನ್ನು ಹೊಂದಿರುತ್ತದೆ.
ವೃತ್ತದ ಪರಿಧಿ = 2pr. ತ್ರಿಜ್ಯ ಜಾಸ್ತಿ ಆದ ಹಾಗೆ ಪರಿಧಿಯು ಜಾಸ್ತಿಯಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಗಮನಿಸಿ: C/r = 2p (ಸ್ಥಿರಾಂಕ) ವಾಗಿರುವುದರಿಂದ Cr.
ವೃತ್ತದ ವಿಸ್ತೀರ್ಣ= pr2. ತ್ರಿಜ್ಯ ಕಡಿಮೆ ಆದ ಹಾಗೆ ವಿಸ್ತೀರ್ಣವು ಕಡಿಮೆಯಾಗುತ್ತಾ ಹೋಗುತ್ತದೆ. ಆದುದರಿಂದ A/r2= p ಮತ್ತು Ar.
ಎರಡು ಸ್ಥಳಗಳ ಮಧ್ಯೆ ಇರುವ ದೂರವನ್ನು ಕಂಡುಹಿಡಿಯಲು ನಾವು ಭೂಪಟದಲ್ಲಿನ ದೂರಕ್ಕೆ ಸ್ಕೇಲ್(ಉದಾ: 1 ಸೆ.ಮೀ= 10 ಕಿ.ಮೀ) ಪ್ರಮಾಣದಿಂದ ಗುಣಿಸಿ ನಿಜವಾದ ದೂರವನ್ನು ಕಂಡು ಹಿಡಿಯುತ್ತೇವೆ. ಇಲ್ಲಿ ಸ್ಕೇಲ್ ಎನ್ನುವುದು ಅನುಪಾತೀಯ ಸ್ಥಿರಾಂಕವಾಗಿರುತ್ತದೆ. ಮಾನವನ ತೂಕವು ಅವನ ವಯಸ್ಸಿಗೆ ನೇರ ಅನುಪಾತದಲ್ಲಿ ಇರುತ್ತದೆಯೇ? – ಇಲ್ಲ.
ಸಮಸ್ಯೆ 1 : ವಿಶ್ರಾಂತ ಸ್ಥಿತಿಯಿಂದ ಬೀಳುತ್ತಿರುವ ಒಂದು ವಸ್ತುವಿನ ಚಲಿಸಿದ ದೂರವು ಅದು ತೆಗೆದುಕೊಳ್ಳುವ ಕಾಲದ ವರ್ಗಕ್ಕೆ ತಕ್ಕಂತೆ ಮಾರ್ಪಡುತ್ತದೆ. ಒಂದು ವಸ್ತುವು 2 ಸೆಕೆಂಡ್ ಕಾಲದಲ್ಲಿ 64cm ದೂರ ಕೆಳಗೆ ಬಿದ್ದರೆ 6ಸೆಕೆಂಡ್ ಗಳಲ್ಲಿ ವಸ್ತುವು ಎಷ್ಟು ದೂರ ಕೆಳಗೆ ಬೀಳುವುದು? ಈ ಸಮಸ್ಯೆಯನ್ನು ಏಕಮಾನ ಪದ್ಧತಿಯ ರೀತಿಯಲ್ಲಿ ಕೆಳಗಿನಂತೆ ಪರಿಹರಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ
ಪರಿಹಾರ:
ಈ ಸಮಸ್ಯೆಯನ್ನು ಏಕಮಾನ ಪದ್ಧತಿಯ ರೀತಿಯಲ್ಲಿ ಕೆಳಗಿನಂತೆ ಪರಿಹರಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ
2sec >>> 64cm
6sec >>> (64/2)*6= 192
ಇದು ಪರಿಹಾರವಲ್ಲ.
dt2 - ದತ್ತ
d/t2= k
k = 64/4= 16
ಆದುದರಿಂದ k = 16= d/62=d/36
d= 16*36= 576
6 ಸೆಕೆಂಡ್ ಗಳಲ್ಲಿ ವಸ್ತುವು 576 cms ದೂರ ಕೆಳಗೆ ಬೀಳುವುದು.
ಅಧಿಕ ಇಳುವರಿಯಿಂದಾಗಿ ಟೊಮ್ಯಾಟೋ ತರಕಾರಿ ಬೆಳೆದವರು ರಸ್ತೆಗಳಲ್ಲಿ ಅದನ್ನು ಸುರಿಯುವುದನ್ನು ನೀವು ಕೇಳಿರುವಿರಿ ಅಲ್ಲವೇ? ಅದು ಏಕೆ? ಹಾಗೆಯೇ
ಉದಾಹರಣೆಗಳು:
ನೇರ ಮಾರ್ಪಿನಲ್ಲಿ, ಒಂದು ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ವು ಹೆಚ್ಚಾದಾಗ, ಅದನ್ನು ಹೊಂದಿಕೊಂಡಿರುವ ಇನ್ನೊಂದು ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ವು ಹೆಚ್ಚಾಗುತ್ತದೆ. ಆದರೆ ಮೇಲಿನ ಉದಾಹರಣೆಗಳನ್ನು ಗಮನಿಸಿದಾಗ ಒಂದು ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ವು ಹೆಚ್ಚಾದಾಗ, ಅದನ್ನು ಹೊಂದಿಕೊಂಡಿರುವ ಇನ್ನೊಂದು ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ವು ಕಡಿಮೆಯಾಗುತ್ತದೆ. ಅಂತಹ ಸಂದರ್ಭಗಳಲ್ಲಿ ಆ ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ಗಳನ್ನು ಹೊಂದಿಕೊಂಡಂತಹ ಗುಣಲಬ್ಧವು ಸ್ಥಿರಾಂಕವಾಗಿರುತ್ತದೆ. ಬೇರೆ ರೀತಿಯಲ್ಲಿ ಹೇಳುವುದಾದರೆ, xಮತ್ತು y ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ಗಳಾದಾಗ x1/y. x ಎನ್ನುವುದು y ಗೆ ವಿಲೋಮ ಅನುಪಾತದಲ್ಲಿವೆ ಎನ್ನುತ್ತೇವೆ ಮತ್ತು xy=k (ಸ್ಥಿರಾಂಕ)
ಹೀಗೆಯೇ, x1/y2 , x1/y4 , x1/ . . . . ಆದಾಗ xy2, xy4, x ಗಳು ಅನುಕ್ರಮವಾಗಿ ಸ್ಥಿರಾಂಕವಾಗಿರುತ್ತವೆ.
ಸಮಸ್ಯೆ 2 : ಒಂದು ಚೆಂಡನ್ನು ಮೇಲ್ಮುಖವಾಗಿ ಎಸೆದಾಗ, ಚೆಂಡು ಗಾಳಿಯಲ್ಲಿರುವ ಕಾಲ T ಸೆಕೆಂಡ್ ಗಳು ಆದರೆ, ತಲುಪಿದ ಎತ್ತರ h ಮೀಟರ್ ಗಳ ವರ್ಗಮೂಲಕ್ಕೆ ನೇರ ಅನುಪಾತದಲ್ಲಿರುತ್ತದೆ. ಎತ್ತರ h=25m ಆದಾಗ,T=4.47 sec ಇರುತ್ತದೆ.
ಪರಿಹಾರ:
T
T= k
4.47= 5k
k = 0.894
T = 0.894
h =50 ಆದಾಗ
T= 0.894* = 0.894*7.07 6.32
T =5 ಆದಾಗ
= T/k = 5/0.894 5.60 31.36 ಮೀ.
ಅನುಪಾತವು ಹಲವು ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ಗಳನ್ನು ಅವಲಂಬಿಸುವ ಸಾಧ್ಯತೆ ಇದೆಯೇ? ಸರಳ ಬಡ್ಡಿ ಮತ್ತು ಚಕ್ರಬಡ್ಡಿಯ ಸೂತ್ರಗಳು:
SI = PTR/100
ಮತ್ತು
CI = P(1+R/100)T-P
ನಾವು ಏನನ್ನು ಗಮನಿಸಬಹುದು? ಸರಳ ಬಡ್ಡಿಯು ಠೇವಣಿ(P), ಅವಧಿ(T) ಮತ್ತು ಬಡ್ಡಿ(R) ಗಳಿಗೆ ನೇರ ಅನುಪಾತದಲ್ಲಿವೆ. ಮತ್ತು ಚಕ್ರಬಡ್ಡಿಯು ಆ ಮೂರು ಚರಾಂಶ(ಅವ್ಯಕ್ತ)ಗಳನ್ನು ಅವಲಂಬಿಸಿದೆ. ಹಾಗೆಯೇ ವ್ಯಕ್ತಿಯ ತೂಕವು ಭೂಮಿಯಿಂದ ಎಷ್ಟು ದೂರದಲ್ಲಿದ್ದಾನೆ ಎನ್ನುವುದರ ಮೇಲೆ ಅವಲಂಬಿತವಾಗಿದೆ.
ಮಾಡುವ ಕೆಲಸವು ವ್ಯಕ್ತಿಗಳು(M), ಕೆಲಸದ ದಿನಗಳು(D), ದಿನದಲ್ಲಿ ಕೆಲಸ ಮಾಡುವ ಗಂಟೆ(H) ಗಳಿಗೆ ನೇರ ಅನುಪಾತದಲ್ಲಿವೆ ಎನ್ನುವುದು ನಮಗೆ ತಿಳಿದಿದೆ.
ಅಂದರೆ WM, WD, WH
WM*D*H ಅಥವಾ M*D*H/W = ಸ್ಥಿರಾಂಕ
ಸಮಸ್ಯೆ 3 : 36 ಜನರು 140M ಉದ್ದದ ಗೋಡೆಯನ್ನು 21 ದಿನಗಳಲ್ಲಿ ಕಟ್ಟುವುದಾದರೆ, 50M ಉದ್ದದ ಅದೇ ರೀತಿಯ ಗೋಡೆಯನ್ನು 18 ದಿನಗಳಲ್ಲಿ ಕಟ್ಟಲು ಎಷ್ಟು ಜನರು ಬೇಕು?
ಪರಿಹಾರ:
ಇಲ್ಲಿ W1= 140, M1=36, D1=21 ಮತ್ತು W2= 50, D2=18, ಕೊಟ್ಟಾಗ M2 ಕಂಡುಹಿಡಿಯಬೇಕು. H ದಿನದಲ್ಲಿ ಕೆಲಸ ಮಾಡುವ ಗಂಟೆಗಳಾಗಿದ್ದು ಅದು ಸಮವಾಗಿರುತ್ತದೆ.
M*D*H/W = ಸ್ಥಿರಾಂಕ
36*21*H/140 = M2*18*H/50
ಬಿಡಿಸಿದಾಗ M2 = 15
ಸಮಸ್ಯೆ 4 : ಕೊಳಾಯಿ A, ಒಂದು ನೀರಿನ ತೊಟ್ಟಿಯನ್ನು 8 ಗಂಟೆಗಳಲ್ಲಿ ತುಂಬುತ್ತದೆ. ಮತ್ತು ಕೊಳಾಯಿ B, 12 ಗಂಟೆಗಳಲ್ಲಿ ಖಾಲಿ ಮಾಡುತ್ತದೆ. ಎರಡೂ ಕೊಳಾಯಿಗಳನ್ನು ಏಕಕಾಲದಲ್ಲಿ ತೆರೆದರೆ ತೊಟ್ಟಿ ತುಂಬಲು ಎಷ್ಟು ಗಂಟೆಗಳ ಕಾಲ ಬೇಕಾಗುವುದು?
ಪರಿಹಾರ:
1 ಗಂಟೆಯಲ್ಲಿ ತುಂಬಿದ ತೊಟ್ಟಿಯ ಭಾಗ = (1/8-1/12)= (3-2)/24= 1/24.
ತೊಟ್ಟಿ ತುಂಬಲು 24 ಗಂಟೆಗಳು ಬೇಕು.
ಸಮಸ್ಯೆ 5 : 180 ಜನರು ಪ್ರತಿದಿನ 10 ಗಂಟೆ ಕೆಲಸ ಮಾಡಿ 6 ದಿನಗಳಲ್ಲಿ 60m ಉದ್ದದ 1m ಅಗಲದ 1m ಆಳದ ಕಾಲುವೆಯನ್ನು ತೋಡುತ್ತಾರೆ. 100 ಜನರು ದಿನಕ್ಕೆ 8 ಗಂಟೆ ಕೆಲಸಮಾಡಿ, 100m ಉದ್ದದ 1.5m ಅಗಲದ1.2m ಆಳದ ಕಾಲುವೆಯನ್ನು ಎಷ್ಟು ದಿನಗಳಲ್ಲಿ ತೋಡುತ್ತಾರೆ?
ಪರಿಹಾರ:
ಇಲ್ಲಿ W1= 60*1*1, M1=180, D1=6 ಮತ್ತು H1 =10, ಮತ್ತು W2= 100*1.5*1.2, M2=100, ಮತ್ತು H2 =8, ಕೊಟ್ಟಾಗ D2 ಕಂಡುಹಿಡಿಯಬೇಕು.
M*D*H/W = ಸ್ಥಿರಾಂಕ
M1*D1*H1/W1 = M2*D2*H2/W2
180*6*10/60 = 100*D2*8*/(100*1.5*1.2)
ಬಿಡಿಸಿದಾಗ D2 = 40.5
ಕಾಲುವೆ ತೋಡಲು 40.5 ದಿನಗಳು ಬೇಕು
ಸಮಸ್ಯೆ 6 : ಒಂದು ವಸ್ತುವಿನ ತೂಕವು ಭೂಮಿಯ ಕೇಂದ್ರದಿಂದಿರುವ ಅಂತರದ ವರ್ಗಕ್ಕೆ ವಿಲೋಮವಾಗಿರುವುದು. ಭೂಮಿಯ ಸರಿಸುಮಾರು ತ್ರಿಜ್ಯ 6380 KM ಆದರೆ 80 KG ದ್ರವ್ಯರಾಶಿಯ ವ್ಯಕ್ತಿಯು ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ 1600 KM ಎತ್ತರದಲ್ಲಿ ಎಷ್ಟು ತೂಗುತ್ತಾನೆ?
ಪರಿಹಾರ:
ಇಲ್ಲಿ W1/d2
ವ್ಯಕ್ತಿಯು ಭೂಮಿಯ ಮೇಲಿರುವಾಗ ಆತನ ತೂಕ = 80 KG d1 =ಭೂಮಿಯ ತ್ರಿಜ್ಯ=6380 KM
W2 ವ್ಯಕ್ತಿಯು ಭೂಮಿಯ ಮೇಲ್ಮೈಯಿಂದ 1600 KM ಎತ್ತರದಲ್ಲಿರುವಾಗಿನ ತೂಕ ಆಗಿರಲಿ.
W1 d12= W2 d22
80*63802= W2*79802
ಬಿಡಿಸಿದಾಗ W2= 51.14
ಸಮಸ್ಯೆ 7 : A ಯು ಒಬ್ಬನೇ ಒಂದು ಕೆಲಸಮಾಡಲು ಅವನು ಮತ್ತು B ಒಟ್ಟಿಗೆ ಸೇರಿ ಕೆಲಸಮಾಡುವ ಸಮಯಕ್ಕಿಂತ 5 ಹೆಚ್ಚಿನ ದಿನಗಳನ್ನು ತೆಗೆದು ಕೊಳ್ಳುತ್ತಾನೆ. ಅದೇ B ಯು ಒಬ್ಬನೇ ಕೆಲಸಮಾಡಲು ಅವನು ಮತ್ತು A ಒಟ್ಟಿಗೆ ಸೇರಿ ಕೆಲಸಮಾಡುವ ಸಮಯಕ್ಕಿಂತ 20 ಹೆಚ್ಚಿನ ದಿನಗಳನ್ನು ತೆಗೆದು ಕೊಳ್ಳುತ್ತಾನೆ. ಹಾಗಾದರೆ A ಮತ್ತು B ಒಟ್ಟಿಗೆ ಸೇರಿ ಕೆಲಸಮಾಡಲು ಎಷ್ಟು ದಿನ ತೆಗೆದುಕೊಳ್ಳುತ್ತಾರೆ?
ಪರಿಹಾರ:
A ಮತ್ತು B ಒಟ್ಟಿಗೆ ಸೇರಿ ಕೆಲಸಮಾಡಲು ತೆಗೆದುಕೊಳ್ಳುವ x ದಿನಗಳು ಆಗಿರಲಿ.
A ಯು ಒಬ್ಬನೇ ಕೆಲಸಮಾಡಲು ತೆಗೆದುಕೊಳ್ಳುವ ದಿನಗಳು = x+5
B ಯು ಒಬ್ಬನೇ ಕೆಲಸಮಾಡಲು ತೆಗೆದುಕೊಳ್ಳುವ ದಿನಗಳು = x+20
ಸೂತ್ರದಂತೆ A ಮತ್ತು B ಒಟ್ಟಿಗೆ ಸೇರಿ ಕೆಲಸಮಾಡಲು ತೆಗೆದುಕೊಳ್ಳುವ ದಿನಗಳು(=x)= (x+5)*(x+20)/{(x+5)+(x+20)}
x= x2+25x+100/2x+25
2x2+25x= x2+25x+100
x2=100
x=10
A ಮತ್ತು B ಒಟ್ಟಿಗೆ ಸೇರಿ ಕೆಲಸಮಾಡಲು ತೆಗೆದುಕೊಳ್ಳುವ ದಿನಗಳು 10.
ತಾಳೆ:
A ಯು ಒಬ್ಬನೇ ಕೆಲಸಮಾಡಲು ತೆಗೆದುಕೊಳ್ಳುವ ದಿನಗಳು = x+5 = 15 ದಿನಗಳು
B ಯು ಒಬ್ಬನೇ ಕೆಲಸಮಾಡಲು ತೆಗೆದುಕೊಳ್ಳುವ ದಿನಗಳು = x+25 = 30 ದಿನಗಳು
ಸೂತ್ರದಂತೆ A ಮತ್ತು B ಒಟ್ಟಿಗೆ ಸೇರಿ ಕೆಲಸಮಾಡಲು ತೆಗೆದುಕೊಳ್ಳುವ ದಿನಗಳು = 30*15/45= 10
ಸಮಸ್ಯೆ 8 : ಪಂಪ್ A ಯು ಒಂದು ತೊಟ್ಟಿಯನ್ನು 1 ಗಂಟೆಯಲ್ಲಿ, ಪಂಪ್ B ಯು ಅದೇ ತೊಟ್ಟಿಯನ್ನು 1 ಗಂಟೆ 40 ನಿಮಿಷಗಳಲ್ಲಿ ಮತ್ತು ಪಂಪ್ C ಯು ತೊಟ್ಟಿಯನ್ನು ತುಂಬಲು ತೆಗೆದುಕೊಳ್ಳುವ ಕಾಲವು ಅವೆರಡು ಪಂಪ್ ಗಳು ತೆಗೆದುಕೊಳ್ಳುವ ಸರಾಸರಿ ಕಾಲವಾಗಿರುತ್ತದೆ. A ಮತ್ತು B ಪಂಪ್ ಗಳನ್ನು ಒಟ್ಟಿಗೆ ಪ್ರಾರಂಭಿಸಿ ಮತ್ತು ಪಂಪ್ C ಸಾಮರ್ಥ್ಯದ 2 ಪಂಪ್ ಗಳನ್ನು ಖಾಲಿಮಾಡಲು ಏಕಕಾಲದಲ್ಲಿ ಚಾಲೂ ಮಾಡಿದರೆ, ತೊಟ್ಟಿ ಭರ್ತಿಯಾಗುವ ಸಂಭವ ಉಂಟೇ? ಹಾಗಾದರೆ ಎಷ್ಟು ಕಾಲದಲ್ಲಿ ಭರ್ತಿಯಾಗುವುದು?
ಪರಿಹಾರ:
A ಯು ತೆಗೆದುಕೊಳ್ಳುವ ಕಾಲ= 60 ನಿಮಿಷಗಳು
B ಯು ತೆಗೆದುಕೊಳ್ಳುವ ಕಾಲ = 100 ನಿಮಿಷಗಳು
C ಯು ತೆಗೆದುಕೊಳ್ಳುವ ಕಾಲ = 80 ನಿಮಿಷಗಳು
t ಯು ತೊಟ್ಟಿ ತುಂಬಲು ತೆಗೆದುಕೊಳ್ಳುವ ಕಾಲವಾಗಿರಲಿ.
ಸೂತ್ರದಂತೆ
1/t = 1/60+1/100- 2(1/80)
= 1/60+1/100-1/40= (10+6-15)/600 = 1/600
ತೊಟ್ಟಿ ತುಂಬಲು ತೆಗೆದುಕೊಳ್ಳುವ ಕಾಲ= 600 ನಿಮಿಷಗಳು= 10 ಗಂಟೆಗಳು
ಬೀಜಗಣಿತದ ಆರಂಭದಲ್ಲಿ ನೀಡಿದ ಕೆಳಗಿನ ಸಮಸ್ಯೆಯನ್ನು ಬಿಡಿಸುವುದನ್ನು ಇಲ್ಲಿ ಕಲಿಯಲಿದ್ದೇವೆ.
“ನನ್ನ ಮತ್ತು ನನ್ನ ತಂದೆಯ ಒಟ್ಟು ಪ್ರಾಯ 55 ವರ್ಷಗಳು. 16 ವರ್ಷಗಳ ನಂತರ ನನ್ನ ತಂದೆಯ ವಯಸ್ಸು ನನ್ನ ವಯಸ್ಸಿನ ಎರಡರಷ್ಟಾಗುವುದಾದರೆ, ಈಗ ನನ್ನ ವಯಸ್ಸೆಷ್ಟು”?
ನಾವೀಗಾಗಲೇ x+1 = 5, 2a+6 =10, ಈ ರೀತಿಯ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸುವುದನ್ನು ಕಲಿತಿದ್ದೇವೆ. ಇವುಗಳಲ್ಲೆಲ್ಲಾ ಒಂದೇ ಚರಾಕ್ಷರವಿದೆ. ಇಂತಹ ಸಮೀಕರಣಗಳನ್ನು ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳೆನ್ನುತ್ತೇವೆ..
ಈಗ ಒಂದು ಸಮೀಕರಣ x+y = 5 ತೆಗೆದುಕೊಳ್ಳುವಾ.ಇದರಲ್ಲಿ x ಮತ್ತು y ಎಂಬ ಎರಡು ಚರಾಕ್ಷರಗಳಿವೆ. ಈಗ ಈ ಸಮೀಕರಣದಲ್ಲಿ x ಮತ್ತು y ಗಳಿಗೆ ಬೇರೆಬೇರೆ ಬೆಲೆಗಳನ್ನು ಕೊಡುವಾ. ಆಗ (x=1,y=4), (x=2,y=3), (x=3,y=2), (x=0,y=5), (x= -2, y=7) ಈ ರೀತಿ ನಿರ್ದಿಷ್ಟ ಬೆಲೆ ಇರದ ಹಲವು ಬೆಲೆಗಳ ಗುಂಪುಗಳು ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತವೆ. x ಮತ್ತು y ಗಳಿಗೆ ಅಸಂಖ್ಯಾತ ಬೆಲೆಗಳು ಸಿಗುತ್ತವೆ. ಹಾಗಾದರೆ, ಇದು ಏಕೆ?ಸಮೀಕರಣದಲ್ಲಿ x ನ್ನ ಪಕ್ಷಾಂತರಿಸಿದಾಗ, y = 5-x ಆಗುತ್ತದೆ. x ನ ಯಾವುದೇ ಬೆಲೆಗೆ y ಗೆ ಪ್ರತ್ಯೇಕ ಬೆಲೆಗಳು ದೊರೆಯುತ್ತವೆ. ಈ ರೀತಿಯ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಲು ನಮಗೆ x ಮತ್ತು y ಗಳನ್ನೊಳಗೊಂಡು ಇನ್ನೊಂದು ಸಮೀಕರಣಬೇಕು.
ಎರಡು ಚರಾಕ್ಷರಗಳಿರುವ ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಕ್ಕೆ ಅನಂತ ಬೆಲೆಗಳು ಸಿಗುವುದರಿಂದ,ಇಂಥ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಲು ಅದೇ ಚರಾಕ್ಷರಗಳನ್ನು ಹೊಂದಿರುವ ಇನ್ನೊಂದು ಸಮೀಕರಣ ಬೇಕು.
ಈಗ ನಿಮ್ಮ ಸ್ನೇಹಿತನು ನಿಮಗೊಂದು ಆಟದ ಲೆಕ್ಕವನ್ನು ಕೊಡುತ್ತಾನೆಂದು ಭಾವಿಸಿ. ನೀವು ಸರಿಯುತ್ತರ ಹೇಳಿದರೆ, ಅವನ ವಯಸ್ಸಿನಷ್ಟೇ ಸಂಖ್ಯೆಯ ಸಿ.ಡಿ.ಗಳನ್ನು ನಿಮಗೆ ಕೊಡುತ್ತಾನೆ. ಈ ಪಂದ್ಯವನ್ನು ನೀವು ಸ್ವೀಕರಿಸುತ್ತೀರಾ?
ಸಮಸ್ಯೆ 1 (ಪಂದ್ಯದ ಲೆಕ್ಕ): “ನನ್ನ ಮತ್ತು ನನ್ನ ತಂದೆಯ ಒಟ್ಟು ಪ್ರಾಯ 55 ವರ್ಷಗಳು. 16 ವರ್ಷಗಳ ನಂತರ ನನ್ನ ತಂದೆಯ ವಯಸ್ಸು ನನ್ನ ವಯಸ್ಸಿನ ಎರಡರಷ್ಟಾಗುವುದಾದರೆ, ಈಗ ನನ್ನ ವಯಸ್ಸೆಷ್ಟು”?
ಅಂದಾಜಿನಿಂದಲೇ ಲೆಕ್ಕವನ್ನು ನೀವು ಮಾಡಬಹುದು. ನಿಮ್ಮ ಸ್ನೇಹಿತನು ಚಿಕ್ಕ ಮಗುವು ಆಗದೇ ಇರುವುದರಿಂದ ಅತನ ವಯಸ್ಸು 9 ವರ್ಷಗಳಿಂದ ಆರಂಭಿಸಿ ಸಮಸ್ಯೆಯನ್ನು ಬಿಡಿಸುವಾ.
ಈಗ(ಒಟ್ಟು =55) |
16 ವರ್ಷಗಳ ನಂತರ |
||
ಸ್ನೇಹಿತನ ವಯಸ್ಸು |
ಅವನ ತಂದೆಯ ವಯಸ್ಸು |
ಸ್ನೇಹಿತನ ವಯಸ್ಸು |
ಅವನ ತಂದೆಯ ವಯಸ್ಸು |
9 |
46 |
25 |
62 |
10 |
45 |
26 |
61 |
11 |
44 |
27 |
60 |
12 |
43 |
28 |
59 |
13 |
42 |
29 |
58 |
14 |
41 |
30 |
57 |
15 |
40 |
31 |
56 |
ಮೇಲಿನ ತ:ಖ್ತೆಯಿಂದ ತಿಳಿದು ಬರುವುದೇನಂದರೆ,ನಿಮ್ಮ ಸ್ನೇಹಿತನ ವಯಸ್ಸು ಈಗ 13 ವರ್ಷಗಳಾದರೆ 15 ವರ್ಷಗಳ ನಂತರ, ಅವನ ತಂದೆಯ ವಯಸ್ಸು(58) ಆತನ ವಯಸ್ಸಿನ(29) ಎರಡರಷ್ಟಾಗಲಿದೆ.ಈಗ ನೀವು ನಿಮ್ಮ ಸ್ನೇಹಿತನಿಂದ 13ಸಿ.ಡಿ.ಗಳನ್ನು ಕೇಳಬಹುದು.
ಆದರೆ ಜಟಿಲ ಸಮಸ್ಯೆಗಳಲ್ಲಿ ಈ ಕ್ರಮವನ್ನು ಅನುಸರಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ. ಹಾಗಾದರೆ ಇದಕ್ಕೊಂದು ನಿಯಮಬದ್ಧವಾದ ಕ್ರಮವಿದೆಯೆ?
ಪರಿಹಾರ:
ನಿಮ್ಮ ಸ್ನೇಹಿತನ ಈಗಿನ ವಯಸ್ಸು = y ವರ್ಷಗಳಾಗಿರಲಿ.
ಅವನ ತಂದೆಯ ವಯಸ್ಸು = x ವರ್ಷಗಳಾಗಿರಲಿ.
ಅವರಿಬ್ಬರ ವಯಸ್ಸಿನ ಮೊತ್ತ 55 ವರ್ಷಗಳಾದ್ದರಿಂದ,
x+y =55
16 ವರ್ಷಗಳ ನಂತರ ನಿಮ್ಮ ಸ್ನೇಹಿತನ ವಯಸ್ಸು = y+16
ನಿಮ್ಮ ಸ್ನೇಹಿತನ ತಂದೆಯ ವಯಸ್ಸು = x+16.
ಸಮಸ್ಯೆಯಲ್ಲಿ ಕೊಟ್ಟಂತೆ, x+16 =2*(y+16)
x+16 = 2y+ 32 (ಸುಲಭೀಕರಿಸಿದೆ.)
x-2y = 32-16 =16 (ಪಕ್ಷಾಂತರಿಸಿದೆ.)
ಕೊನೆಯಲ್ಲಿ ನಮಗೀಗ ಎರಡು ಸಮೀಕರಣಗಳು ದೊರೆತವು:
(1) x+y =55
(2) x-2y = 16
ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಲು ಸಮೀಕರಣದಲ್ಲಿ ಒಂದೇ ಚರಾಕ್ಷರ ಬೇಕು.ಆದ್ದರಿಂದ ಒಂದು ಚರಾಕ್ಷರವನ್ನು ಸಮೀಕರಣದಿಂದ ಹೋಗಲಾಡಿಸಬೇಕು. ಹೇಗೆ?
ದತ್ತ ಸಮೀಕರಣಗಳು:
x+y =55 ==è (1)
x-2y=16 ==è (2)
----------
(2) ನ್ನು (1) ರಿಂದ ಕಳೆಯಿರಿ 0+3y =39 ==è (3)
-----------
3y = 39
y=13
x+y =55 ==è (1)
x = 55-y ಪಕ್ಷಾಂತರಿಸಿದೆ.)
ಮೇಲಿನ ಸಮೀಕರಣದಲ್ಲಿ y=13 ಎಂದು ಆದೇಶಿಸಿದಾಗ,
x=55-13
=42
ನಿಮ್ಮ ಸ್ನೇಹಿತನ ವಯಸ್ಸು = 13 ವರ್ಷ
ಅವನ ತಂದೆಯ ವಯಸ್ಸು = 42 ವರ್ಷ
ತಾಳೆ:
ಈಗ ನಿಮ್ಮ ಸ್ನೇಹಿತನ ವಯಸ್ಸು = 13 ವರ್ಷ, ಅವನ ತಂದೆಯ ವಯಸ್ಸು = 42 ವರ್ಷ ಆದಾಗ ಅವರ ಒಟ್ಟು ಪ್ರಾಯ 55 ವರ್ಷಗಳು.
16 ವರ್ಷಗಳ ನಂತರ,ನಿಮ್ಮ ಸ್ನೇಹಿತನ ವಯಸ್ಸು = 29 ವರ್ಷ, ಅವನ ತಂದೆಯ ವಯಸ್ಸು =58( ಆಗ ಅವನ ವಯಸ್ಸು ತಂದೆಯ ವಯಸ್ಸಿನ ಎರಡರಷ್ಟಾಗುವುದು)
2. x ಮತ್ತು y ಗಳ ಬೆಲೆಗಳನ್ನು (1) ರಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ x+y = 42+13 = 55 , (2) ರಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ: x-2y = 42-26 = 16
ಸಮಸ್ಯೆ 2:ಒಂದು ಕಂಪಾಸು ಪೆಟ್ಟಿಗೆಯ ಬೆಲೆಯು ಒಂದು ಪೆನ್ನಿನ ಬೆಲೆಗಿಂತ ರೂ.18 ಜಾಸ್ತಿ. ನಿಮ್ಮ ಅಧ್ಯಾಪಕರು ನಿಮಗೆ 240 ರೂ ಗಳನ್ನು ಕೊಟ್ಟು 5 ಕಂಪಾಸು ಪೆಟ್ಟಿಗೆ ಮತ್ತು 10 ಪೆನ್ನುಗಳನ್ನು ತರಲು ಹೇಳಿದರೆ, ಒಂದು ಕಂಪಾಸುಪೆಟ್ಟಿಗೆ ಮತ್ತು ಒಂದು ಪೆನ್ನಿನ ಕ್ರಯ ಕಂಡುಹಿಡಿ
ಪರಿಹಾರ:
ಒಂದು ಕಂಪಾಸು ಪೆಟ್ಟಿಗೆಯ ಕ್ರಯ = y ಆಗಿರಲಿ
ಒಂದು ಪೆನ್ನಿನ ಕ್ರಯ = x ಆಗಿರಲಿ
(1) y = x+18 ===(1)
(2) 5y+10x = 240 ===(2)
(1) ನ್ನ ಸರಿಯಾದ ರೂಪದಲ್ಲಿ ಬರೆದಾಗ, y-x =18 ====(3)
(2) ನ್ನ 5 ರಿಂದ ಭಾಗಿಸಿದಾಗ, y+2x= 48 ====(4)
(3) ರಲ್ಲಿ (4) ನ್ನ ಕಳೆದಾಗ -----------
-3x =-30 -------(2)
x = -30/-3 =10 -------(3)
ಒಂದು ಪೆನ್ನಿನ ಕ್ರಯ = 10 ರೂ.
ಒಂದು ಕಂಪಾಸು ಪೆಟ್ಟಿಗೆಯ ಕ್ರಯ = 28 ರೂ.
ಅಭ್ಯಾಸ: x ಮತ್ತು y ಯ ಬೆಲೆಗಳನ್ನು ಸಮೀಕರಣ (1) ಮತ್ತು (2)ರಲ್ಲಿ ಆದೇಶಿಸಿ, ತಾಳೆನೋಡಿ.
ಸಮಸ್ಯೆ 3: ಬಿಡಿಸಿ: 2x+2y =4 ಮತ್ತು x+y =2
ಪರಿಹಾರ:
2x+2y =4 ====(1)
x+y = 2 ====(2)
(2) ನ್ನು 2 ರಿಂದ ಗುಣಿಸಿ.
2x+2y=4 ====(3)
(1) ರಿಂದ(3) ನ್ನು ಕಳೆಯಿರಿ 0 =0 ಇದು ಯಾವಾಗಲೂ ಸತ್ಯ.
x ಮತ್ತು y ಗಳಿಗೆ ಯಾವುದೇ ಬೆಲೆಗಳನ್ನು ಕೊಡಬಹುದು. ಅವುಗಳಿಗೆ ನಿರ್ದಿಷ್ಟವಾದ ಬೆಲೆಗಳಿಲ್ಲ( ಏಕಂದರೆ ಎರಡನೇ ಸಮೀಕರಣ ಮೊದಲನೆಯದರ ಅರ್ಧದಷ್ಟಿದೆ)
ಸಮಸ್ಯೆ 4: ಬಿಡಿಸಿ: 2x+2y =4 ಮತ್ತು x+y = 3
ಪರಿಹಾರ:
ದತ್ತ ಸಮೀಕರಣಗಳು: 2x+2y =4 ====è(1)
x+y = 3 =====è(2)
(2) ನ್ನು 2 ರಿಂದ ಗುಣಿಸಿದಾಗ,
2x+2y=6 =====è(3)
(3) ರಿಂದ (1) ನ್ನ ಕಳೆದಾಗ, 0 =2 ಇದು ನಿಜವಲ್ಲ.
ಆದ್ದರಿಂದ x ಮತ್ತು y ಗಳ ಯಾವ ಬೆಲೆಗಳೂ ಕೊಟ್ಟ ಸಮೀಕರಣಗಳನ್ನು ತೃಪ್ತಿಪಡಿಸುವುದಿಲ್ಲ.
ವ್ಯಾಖ್ಯೆ:ಎರಡು ಚರಾಕ್ಷರಗಳುಳ್ಳ ಎರಡು ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳನ್ನು ಒಟ್ಟಿಗೆ ತೆಗೆದುಕೊಂಡಾಗ, ಅವುಗಳನ್ನು “ಏಕಕಾಲಿಕ ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳು” (simultaneous linear equations) ಎನ್ನುತ್ತೇವೆ..
ಅವುಗಳು, a1 x+ b1 y = c1 ಮತ್ತು a2 x+b2 y = c2
ಇಲ್ಲಿ a1, b1, a2, b2, c1 ,c2 ಗಳು ಸ್ಥಿರಾಂಶಗಳು, x ಮತ್ತು y ಗಳು ಚರಾಕ್ಷರಗಳು ( ಇವುಗಳ ಬೆಲೆಯನ್ನೇ ನಾವು ಕಂಡುಹಿಡಿಯಬೇಕಾದದ್ದು.)
ಹೀಗಿರುವ ಏಕಕಾಲಿಕ ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳನ್ನು ನಾವು ಹೇಗೆ ಬಿಡಿಸಿದ್ದೇವೆ?
ಅನುಸರಿಸಬೇಕಾದ ಹಂತಗಳು
ಗಮನಿಸಿ:
ಎಲ್ಲಾ ಸಂದರ್ಭಗಳಲ್ಲೂ ಏಕಕಾಲಿಕ ಸಮೀಕರಣ ಬಿಡಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ.
1. a1 x+ b1 y = c1
2. a2 x+b2 y = c2
1. (a1 / a2) = (b1 / b2) (c1 / c2) ಆದರೆ ಫಲಿತಾಂಶ ಇಲ್ಲ.
2. (a1 / a2) = (b1 / b2) = (c1 / c2) ಆದರೆ ಅಸಂಖ್ಯಾತ ಪರಿಹಾರಗಳಿವೆ
3. (a1 / a2) (b1 / b2) ಆದಾಗ ಮಾತ್ರ ನಿರ್ದಿಷ್ಟ ಫಲಿತಾಂಶ ಪಡೆಯಲು ಸಾಧ್ಯ.
ಸಮಸ್ಯೆ 5:
ಬಿಡಿಸಿ: x+y =2xy ------à(1)
x-y = 6xy -----à(2)
ಪರಿಹಾರ:
ಎರಡೂ ಸಮೀಕರಣಗಳನ್ನು ಕೂಡಿಸಿ 2x = 8xy
ಅಂದರೆ 1 = 4y
y = 1/4
y ಯ ಬೆಲೆಯನ್ನು ಸಮೀಕರಣ (1) ರಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ,
x+ 1/4 = 2x/4 = x/2
ಪಕ್ಷಾಂತರಿಸಿದಾಗ, x-x/2 = - 1/4
x = -1/2
ತಾಳೆ:
x,y ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸಿದಾಗ:
x+y = -1/2+1/4 = -1/4
2xy = 2*(-1/2)*(1/4) = -1/4
x+y =2xy
x-y = -1/2-1/4 = -3/4
6xy= 6*(-1/2)*(1/4) = -3/4
x-y = 6xy
ಸಮಸ್ಯೆ 6:ಒಂದು ಪರೀಕ್ಷೆಯಲ್ಲಿ ಉತ್ತೀರ್ಣತೆಗೂ ಅನುತ್ತೀರ್ಣತೆಗೂ ಇರುವ ಅನುಪಾತ 4:1( ಉತ್ತೀರ್ಣರಾದವರು ಅನುತ್ತೀರ್ಣರಾದವರ 4 ಪಟ್ಟು). ಒಂದು ವೇಳೆ ಪರೀಕ್ಷೆಗೆ ಕುಳಿತವರಲ್ಲಿ 30 ವಿದ್ಯಾರ್ಥಿಗಳು ಪರೀಕ್ಷೆಗೆಹಾಜರಾಗದಿದ್ದಲ್ಲಿ, 20 ವಿದ್ಯಾರ್ಥಿಗಳು ಕಡಿಮೆ ಉತ್ತೀರ್ಣರಾಗುತ್ತಿದ್ದರು. ಆಗ ಆ ಅನುಪಾತ 5:1 ಆಗಿರುತ್ತಿತ್ತು. ( ಉತ್ತೀರ್ಣರಾದವರು ಅನುತ್ತೀರ್ಣರಾದವರ 5 ಪಟ್ಟು) ಹಾಗಾದರೆ ಪರೀಕ್ಷೆಗೆ ಹಾಜರಾದ ವಿದ್ಯಾಥಿಗಳ ಸಂಖ್ಯೆ ಕಂಡುಹಿಡಿ.
ಪರಿಹಾರ:
ಪರೀಕ್ಷೆಯಲ್ಲಿ ಉತ್ತೀರ್ಣರಾದ ವಿದ್ಯಾಥಿಗಳು: x ಆಗಿರಲಿ.
ಅನುತ್ತೀರ್ಣರಾದ ವಿದ್ಯಾರ್ಥಿಗಳು y ಆಗಿರಲಿ.
x=4y ------à(1)
ಪರೀಕ್ಷೆಗೆ ಕುಳಿತವರು = x+y
30 ಮಂದಿ ಕಡಿಮೆ ಹಾಜರಾದಾಗ, 20 ಮಂದಿ (x-20) ಕಡಿಮೆ ಉತ್ತೀರ್ಣರಾಗುತ್ತಿದ್ದರು. ಆಗ
1) ಹಾಜರಾಗಲಿರುವ ಒಟ್ಟು ವಿದ್ಯಾರ್ಥಿಗಳು = x+y-30
2) ಉತ್ತೀರ್ಣರಾಗಲಿರುವ ವಿದ್ಯಾರ್ಥಿಗಳು = (x+y-30) –(x-20)
= y-10
3) ಉತ್ತೀರ್ಣತೆಗೂ ಅನುತ್ತೀರ್ಣತೆಗೂ ಇರುವ ಅನುಪಾತ 5:1 ಆಗುತ್ತಿತ್ತು.
(x-20) = 5(y-10) -----à(2)
ಈಗ ನಮಗೆ ಎರಡು ಸಮೀಕರಣಗಳು ಸಿಕ್ಕಿದವು. : 1 ನೇ ಸಮೀಕರಣದ x ನ ಬೆಲೆಯನ್ನು 2 ನೇ ಸಮೀಕರಣದಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ
4y-20 = 5(y-10) ---
= 5y-50
4y-20 -4y+20 = 5y-50-4y+20 (ಎರಡೂ ಬದಿಯಿಂದ 4y ನ್ನು ಕಳೆದು 20 ನ್ನು ಕೂಡಿಸಿದಾಗ)
0= y-30
30=y
x=4*30( y ನ ಬೆಲೆಯನ್ನು 1 ನೇ ಸಮೀಕರಣದಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ)
=120
ತಾಳೆ:
ಉತ್ತೀರ್ಣರು: ಅನುತ್ತೀರ್ಣರು = 120:30 (ಇದು 4:1 ರ ಅನುಪಾತದಲ್ಲಿ ಇದೆ)
ಮೊದಲು ಪರೀಕ್ಷೆಗೆ ಕುಳಿತವರು = 120+30=150
30 ಮೊದಲು ಪರೀಕ್ಷೆಗೆ ಕುಳಿತವರು = 150-30 =120 ಮತ್ತು 20 ಮಂದಿ ಕಡಿಮೆ ಉತ್ತೀರ್ಣರಾಗುತ್ತಿದ್ದರು. ಆಗ
ಉತ್ತೀರ್ಣರು = 120-20 =100
ಅನುತ್ತೀರ್ಣರು = 120-100 = 20
ಉತ್ತೀರ್ಣರು: ಅನುತ್ತೀರ್ಣರು = 100:20 (ಇದು 5:1 ರ ಅನುಪಾತದಲ್ಲಿ ಇದೆ)
ಸಮಸ್ಯೆ 7:ಎರಡು ಅಂಕಿ ಸಂಖ್ಯೆಯ ಬಿಡಿ ಆಂಕೆಗಳ ಮೊತ್ತ 9. ಈ ಸಂಖ್ಯೆಯ 9 ರಷ್ಟು, ಬಿಡಿ ಆಂಕಿಗಳನ್ನು ಅದಲು ಬದಲು ಮಾಡಿದಾಗ ದೊರೆತ ಹೊಸ ಸಂಖ್ಯೆಯ ಎರಡರಷ್ಟಕ್ಕೆ ಸಮ ಇದ್ದರೆ ಅಂಕಿಗಳು ಯಾವುವು?
ಪರಿಹಾರ:
x ಅಂಕಿಯು ಹತ್ತರ ಸ್ಥಾನದಲ್ಲೂ y ಯು ಬಿಡಿ ಸ್ಥಾನದಲ್ಲೂ ಇರಲಿ. ಆಗ ಸಂಖ್ಯೆಯ (xy) ಬೆಲೆ 10x+y. ಇದರ ಸ್ಥಾನಗಳನ್ನು ಬದಲಿಸಿದಾಗ ದೊರೆಯುವ ಸಂಖ್ಯೆಯ (yx) ಬೆಲೆ 10y+x.
ದತ್ತಾಂಶದಂತೆ:
x+y = 9 (xy)
9(10x+y) = 2(10y+x)
ಅಭ್ಯಾಸ:
ಈ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಿ (x =1 and y=8). ಸಂಖ್ಯೆ 18 ಆಗಿರುತ್ತದೆ.
1+8 = 9
9*18 =2*81
ಸಮಸ್ಯೆ 8:ನಿಮ್ಮ ತಾಯಿಯ ಜೊತೆಗೆ ನಿಮ್ಮ ಊರಿಗೆ ಹೋಗಬೇಕಾಗಿದೆ ಎಂದು ಭಾವಿಸಿರಿ, ನೀವು ವಿದ್ಯಾರ್ಥಿಯಾಗಿರುವುದರಿಂದ ನಿಮಗೆ ಟಿಕೇಟ್ ನ ಬೆಲೆಯಲ್ಲಿ 50% ಕಡಿತ ಇರುತ್ತದೆ, ಆದರೆ ಕಾದಿರಿಸುವ ಶುಲ್ಕ ದಲ್ಲಿ ರಿಯಾಯಿತಿಇರುವುದಿಲ್ಲ. ಕಾದಿರಿಸುವ ಶುಲ್ಕ ಸೇರಿ ನಿಮ್ಮ ತಾಯಿಯ ಟಿಕೆಟ್ 2125 ರೂ ಇದ್ದು ನಿಮ್ಮಿಬ್ಬರ ಟಿಕೆಟ್ ಗೆ 3200 ರೂ ಆದರೆ, ಒಬ್ಬ ವಯಸ್ಕನ ಟಿಕೆಟ್ ನ ಬೆಲೆ ಮತ್ತು ಕಾದಿರಿಸುವ ಶುಲ್ಕ ಏಷ್ಟು?
ಪರಿಹಾರ:
x ಟಿಕೆಟ್ ನ ಬೆಲೆ ಮತ್ತು y ಕಾದಿರಿಸುವ ಶುಲ್ಕ ಇರಲಿ. ನೀವು ವಿದ್ಯಾರ್ಥಿ ಆಗಿರುವದರಿಂದ ನಿಮ್ಮ ಟಿಕೆಟ್ ನ ಬೆಲೆ (1/2)x
x+y = 2125 ----à(1)
ನೀವು ವಿದ್ಯಾರ್ಥಿ ಆಗಿರುವದರಿಂದ ನಿಮ್ಮ ಟಿಕೆಟ್ ನ ಬೆಲೆ (1/2)x . ಕಾದಿರಿಸುವ ಶುಲ್ಕದಲ್ಲಿ ವಿನಾಯಿತಿ ಇಲ್ಲದೇ ಇರುವುದರಿಂದ ಅದು ಇಬ್ಬರಿಗೂ y ಯೇ ಆಗಿರುತ್ತದೆ.
ನಿಮ್ಮಿಬ್ಬರ ಟಿಕೆಟ್ ನ ಬೆಲೆ = {(1/2)x+y} + (x +y) =3200
(3/2)x+2y =3200 = 3200
3x+4y =6400 ----à(2) (ಎರಡೂ ಕಡೆ ಗುಣಿಸಿದಾಗ)
ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಿದಾಗ x = 2100, y = 25 ಎಂದು ದೊರೆಯುತ್ತದೆ.
ತಾಳೆ:
2125 = 2100+25
3200 = 2100+25+1050+25
ಸಂ |
ಕಲಿತ ಮುಖ್ಯಾಂಶಗಳು |
1 |
( a1 x+ b1 y = c1, a2 x+b2 y = c2) ಈ ರೀತಿಯ ಏಕಕಾಲಿಕಸಮೀಕರಣಗಳನ್ನು ಸರಳ ಸಮೀಕರಣಗಳಾಗಿ ಪರಿವರ್ತಿಸಿ, ಬಿಡಿಸುವುದು.. |
2 |
ಎಲ್ಲಾ ಏಕಕಾಲಿಕ ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ |
ಪರ್ಯಾಯ ವಿಧಾನ (Alternate method): ಆದೇಶದಿಂದ ಹೋಗಲಾಡಿಸುವುದು (Method of elimination by substitution)
ಏಕಕಾಲಿಕ ರೇಖಾತ್ಮಕ ಸಮಿಕರಣಗಳನ್ನು ಇನ್ನೊಂದು ವಿಧಾನದಿಂದಲ್ಲೂ ಬಿಡಿಸಬಹುದು:
ಈಗ 2.14.2 ಸಮಸ್ಯೆಯನ್ನು ಈ ವಿಧಾನದಲ್ಲಿ ಬಿಡಿಸುವಾ.
ಬಿಡಿಸಿ:
5y+10x =240 ----(1)
5y -5X = 90 ----(2)
5y= 5x + 90 (ಸಮೀಕರಣ 2 ರಲ್ಲಿ 5xನ್ನ ಪಕ್ಷಾಂತರಿಸಿದೆ)
5 ರಿಂದ ಭಾಗಿಸಿ y = x+18
y ಯ ಬೆಲೆಯನ್ನು ಸಮೀಕರಣ 1 ರಲ್ಲಿ ಆದೇಶಿಸಿ,
5y +10x =240
5(x+18)+10x=240
5x+90+10x=240
15x= 240-90
=150
ಅಂದರೆ 150 = 15x
x = 10
x ನ ಬೆಲೆಯನ್ನು 1ರಲ್ಲಿ ಆದೇಶಿಸಿ,
5y+10*10 = 240
ಅಂದರೆ 5y = 240-100=140
y = 28
ಈ ಬೆಲೆಗಳು ಉದಾ.2.14.2 ರಲ್ಲಿ ಕೂಡಾ ದೊರೆತಿವೆ.
ನಾವೀಗಾಗಲೇ ಸಂಖ್ಯೆಗಳ ಮೇಲೆ ಸಂಕಲನ, ವ್ಯವಕಲನ, ಗುಣಾಕಾರ ಮತ್ತು ಭಾಗಾಕಾರ ಕ್ರಿಯೆಗಳನ್ನು ಮಾಡಿದ್ದೇವೆ. ಈ ಕ್ರಿಯೆಗಳನ್ನು ಗಣಿತದ ಮೂಲ ಕ್ರಿಯೆಗಳು ಎನ್ನುತ್ತೇವೆ.
ಇವುಗಳನ್ನು ಆಧರಿಸಿ, ಇನ್ನೂ ಬೇರೆ ಕ್ರಿಯೆಗಳನ್ನು ಮಾಡಲು ಸಾಧ್ಯವೆ? ಹೌದು, ಕೆಲವು ಕ್ರಿಯೆಗಳಿವೆ:-
ಸಂಖ್ಯೆಗಳ ಲಕ್ಷಣಗಳನ್ನು ಬರೆಯುವಾಗ ಉಪಯೋಗಿಸುವ ಕೆಲವು ಸಂಕೇತಗಳು:-
ಅರ್ಥ |
ಸಂಕೇತ |
ಸೇರಿದೆ |
|
ಸೇರಿಲ್ಲ |
|
ಎಲ್ಲಾ(ಪ್ರತಿಯೊಂದೂ) |
|
ಅಸ್ತಿತ್ವವಿದೆ |
|
ಹೀಗಾಗುವಂತೆ |
: |
ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳ ಗಣ N = {1,2,3,4 …} = { n: n ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳು }
ಪೂರ್ಣ ಸಂಖ್ಯೆಗಳ ಗಣ W = {0,1,2,3,….} = {n: n =0, ಮತ್ತು n {N}}
ಉದಾಹರಣೆ 1:
S = {2, 4, 8, 16….} = { 2 ರ ಘಾತ ಸಂಖ್ಯೆಗಳು 2} = {2m ; ಇಲ್ಲಿ m ಎಂಬುದು ಒಂದು ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆ ಹಾಗೂ m >1}
ಈಗ ನಾವು ಈ ಗಣದ ಗಣಾಂಶಗಳಲ್ಲಿ ಸಂಕಲನ, ಗುಣಾಕಾರ, ಘಾತ ಕ್ರಿಯೆಗಳನ್ನು ಮಾಡುವಾ. ಈ ಕೆಳಗಿನ ಅಂಶಗಳನ್ನು ನಾವು ಗಮನಿಸುತ್ತೇವೆ.
1. S ಗಣದಲ್ಲಿರುವ ಯಾವುದೇ ಎರಡು ಸಂಖ್ಯೆಗಳನ್ನು ಕೂಡಿಸಿದಾಗ ಆ ಮೊತ್ತವು S ಗಣದಲ್ಲಿಲ್ಲ. (ಉದಾ; 6(=2+4),10(=2+8),12(=4+8) ಇವೆಲ್ಲ S ಗಣದಲ್ಲಿಲ್ಲ.)
2. S ನಲ್ಲಿರುವ ಯಾವುದೇ 2 ಸಂಖ್ಯೆಗಳ ಗುಣಲಬ್ಧವೂ ಕೂಡಾ S ಗಣದ ಗಣಾಂಶವೇ ಆಗಿದೆ. ಏಕೆ?
( 2m ಮತ್ತು 2n ಇವೆರಡು S ನಲ್ಲಿರುವ ಗಣಾಂಶಗಳಾದರೆ ಗುಣಲಬ್ಧ (2m )*(2n) = 2m+n ಇದು S ಗಣದ ಒಂದು ಗಣಾಂಶವೇ ಆಗಿದೆ.)
3. 2 ರ ಯಾವುದೇ ಘಾತದ ಸಂಖ್ಯೆಯು S ಗಣದ ಗಣಾಂಶವೇ ಆಗಿದೆ. ಏಕೆ?
(2m ಮತ್ತು 2n ಇವು S ಗಣದ ಗಣಾಂಶಗಳಾಗಿದ್ದರೆ, 2mz [=(2m )z ಇಲ್ಲಿ z =2n ಇದೂ ಕೂಡಾ S ಗಣದ ಗಣಾಂಶವೇ ಆಗಿರುತ್ತದೆ.)
ಫಲಿತಾಂಶ:
S ಗಣದಲ್ಲಿರುವ ಯಾವುದೇ ಗಣಾಂಶಗಳ ಸಂಕಲನದಿಂದ ಬರುವ ಮೊತ್ತವು S ಗಣದಲ್ಲಿಲ್ಲ. ಆದರೆ S ಗಣದ ಗಣಾಂಶಗಳ ಮೇಲೆ ಮಾಡಿದ ಗುಣಾಕಾರ ಮತ್ತು ಘಾತಾಂಕ ಕ್ರಿಯೆಗಳ S ಗಣದಲ್ಲಿ ಆವೃತ ಕ್ರಿಯೆಗಳಾಗಿವೆ.
ವ್ಯಾಖ್ಯೆ:
1. a, b A ಆದಾಗ, a, b ಗಳ ಮೇಲೆ ಮಾಡಿದ ಕ್ರಿಯೆಯ ಫಲಿತಾಂಶ A ಆದರೆ, A ಯು ಆ ಕ್ರಿಯೆಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಆವೃತ ಗುಣ ಹೊಂದಿದೆ ಎನ್ನುತ್ತೇವೆ.
2. a, b ಆದಾಗ ಮತ್ತು c = (a ಕ್ರಿಯೆ b) A ಆದರೆ ಆ ಕ್ರಿಯೆಯನ್ನು ದ್ವಿಮಾನ ಕ್ರಿಯೆ (Binary operation) ಎನ್ನುತ್ತೇವೆ. ರೂಢಿಯಲ್ಲಿ ಈ ಕ್ರಿಯೆಯನ್ನು ‘ ’ ದಿಂದ ಸೂಚಿಸುತ್ತೇವೆ ಮತ್ತು
a ಕ್ರಿಯೆ b ಯನ್ನು ಓದುವ ಕ್ರಮ a ಸ್ಟಾರ್(ನಕ್ಷತ್ರ) b.
ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ S ಗಣವು ಸಂಕಲನದಲ್ಲಿ ಆವೃತ ಗುಣವನ್ನು ಹೊಂದಿಲ್ಲ. ಆದ್ದರಿಂದ ಸಂಕಲನವು S ಗಣದಲ್ಲಿ ಒಂದು ಕ್ರಿಯೆ ಅಲ್ಲ.
ಆದರೆ ಗುಣಾಕಾರ ಮತ್ತು ಘಾತ ಕ್ರಿಯೆಗಳು ಆವೃತ ಗುಣವನ್ನು ತೃಪ್ತಿ ಪಡಿಸುತ್ತವೆ. ಆದ್ದರಿಂದ ಈ ಎರಡು ಕ್ರಿಯೆಗಳು S ಗಣದಲ್ಲಿ ಕ್ರಿಯೆಗಳು.
ಉದಾಹರಣೆಗಳು:
ಸಂ. |
ಗಣ |
ಕ್ರಿಯೆ: ನಕ್ಷತ್ರ ( ) |
ಅವಲೋಕನ |
ಫಲಿತಾಂಶ |
ಕಾರಣ |
1 |
N = {1,2,3; ¸ ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳು } |
ಮೊತ್ತ |
,a,b N, a+b N |
N ಗಣವು + ಕ್ರಿಯೆಯಲ್ಲಿ ಆವೃತ ಗುಣವನ್ನು ಹೊಂದಿದೆ. |
2 ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳ ಮೊತ್ತ ಒಂದು ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆ. |
2 |
N = {1,2,3; ¸ ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳು } |
ಗುಣಲಬ್ಧ |
,a,b N, a* b N |
N ಗಣವು * ಕ್ರಿಯೆಯಲ್ಲಿ ಆವೃತ ಗುಣವನ್ನು ಹೊಂದಿದೆ. |
2 ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳ ಗುಣಲಬ್ಧ ಒಂದು ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಯೇ ಆಗಿದೆ. |
3 |
A = {1,3,5 ಬೆಸ ಸಂಖ್ಯೆಗಳು } |
ಮೊತ್ತ |
,a,b N, a+b N |
A ಯು + ಕ್ರಿಯೆಯಲ್ಲಿ ಆವೃತ ಗುಣಹೊಂದಿಲ್ಲ. |
2 ಬೆಸ ಸಂಖ್ಯೆಗಳ ಮೊತ್ತವು ಬೆಸ ಸಂಖ್ಯೆ ಅಲ್ಲ (ಅದು ಸಮ ಸಂಖ್ಯೆ) |
4 |
B = {1,3,5 ಬೆಸ ಸಂಖ್ಯೆಗಳು } |
ಗುಣಲಬ್ಧ |
,a,b N, a*b N |
B ಗಣವು * ಕ್ರಿಯೆಯಲ್ಲಿ ಆವೃತ ಗುಣವನ್ನು ಹೊಂದಿದೆ. |
2 ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಗಳ ಗುಣಲಬ್ಧ ಒಂದು ಸ್ವಾಭಾವಿಕ ಸಂಖ್ಯೆಯೇ ಆಗಿದೆ.. |
5 |
Z =(0,-1,1,2,-2: ಪೂರ್ಣಾಂಕಗಳು) |
ಸರಾಸರಿ |
,a,b Z, a b=(a+b)/2 Z |
Z ಗಣವು ‘ಸರಾಸರಿ’ ಕ್ರಿಯೆಯಲ್ಲಿ ಆವೃತ ಗುಣ ಹೊಂದಿಲ್ಲ. |
0 1 = (0+1)/2 ಇದು ಪೂರ್ಣಾಂಕವಲ್ಲ.
|
6 |
Q = (p/q, ಇಲ್ಲಿ p,q Z, q 0)
|
ಭಾಗಾಕಾರ |
,a,b Q, a/b Q |
Q ಗಣವು / ಕ್ರಿಯೆಯಲ್ಲಿ ಆವೃತ ಗುಣಹೊಂದಿಲ್ಲ. |
ಭಾಗಲಬ್ಧ ಸಂಖ್ಯೆಗಳನ್ನು 0 ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಭಾಗಲಬ್ಧವು ಅಸ್ತಿತ್ವದಲ್ಲಿಲ್ಲ. 0 Q ಆದರೂ 1/0 Q) |
ಯಾವುದೇ ಗಣವು ಒಂದು ಕ್ರಿಯೆಯಲ್ಲಿ ಆವೃತ ಗುಣವನ್ನು ತೃಪ್ತಿ ಪಡಿಸಿದರೆ. ಆ ಕ್ರಿಯೆಯು ಒಂದು ದ್ವಿಮಾನ ಕ್ರಿಯೆ. ವಿಲೋಮವಾಗಿ, ಒಂದು ಗಣದಲ್ಲಿ ಒಂದು ಕ್ರಿಯೆಯು ದ್ವಿಮಾನ ಕ್ರಿಯೆಯಾಗಿದ್ದರೆ, ಆ ಗಣವು ಆ ಕ್ರಿಯೆಯಲ್ಲಿ ಆವೃತ ಗುಣ ಹೊಂದಿರುತ್ತದೆ.
ವ್ಯಾಖ್ಯೆ:
ಒಂದು ಶೂನ್ಯವಲ್ಲದ ಗಣವು ಒಂದು ದ್ವಿಮಾನ ಕ್ರಿಯೆಯನ್ನು ಹೊಂದಿದ್ದರೆ, ಅದನ್ನು ಒಂದು ಬೈಜಿಕ ಸಂರಚನೆ (algebraic structure) ಎಂದು ಕರೆಯುತ್ತಾರೆ. ಅದನ್ನು ಸಾಮಾನ್ಯವಾಗಿ (S,*) ಸಂಕೇತದಿಂದ ಸೂಚಿಸುತ್ತಾರೆ.
ಮೇಲಿನ ಉದಾಹರಣೆಗಳಲ್ಲಿ (N,+),(N,*),(B,*) ಇವೆಲ್ಲವೂ ಬೈಜಿಕ ಸಂರಚನೆಗಳು (A,+),(Z, ಸರಾಸರಿ), (Q,/) ಇವು ಬೈಜಿಕ ಸಂರಚನೆಗಳಲ್ಲ..
ಯಾವುದೇ ಸಂಖ್ಯೆಗೆ: ಭಾಜ್ಯ = (ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ.
ಈ ಮೇಲಿನ ಸಂಬಂಧ ಬಹುಪದಗಳಿಗೂ ಅನ್ವಯಿಸುತ್ತದೆ.
ಸಮಸ್ಯೆ 1: 12m3 ನ್ನು 4 m2 n ನಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
ಹಂತ 1: 12m3 n5 / 4 m2 n = (12/4)* (m3 n5 /m2 n)
ಹಂತ 2: 12/4 = 3,
ಹಂತ 3:
m3 n5/ m2 n = m3-2 n5-1 = m n4
12m3 n5 /4 m2 n = 3 m n4
ತಾಳೆ:
(ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ = 4 m2 n*3 m n4 +0 =12 m2+1 n1+4 =12m3 n5 - ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 2 : 57x2y2z2 ನ್ನು 19xyz ನಿಂದ ಭಾಗಿಸಿ.
ಹಂತ 1 :
57x2y2z2 /19xyz = (57/19) * (x2y2z2)/xyz
ಹಂತ 2:
57/19 =3
ಹಂತ 3:
x2y2z2/xyz = x2-1y2-1z2-1 = xyz
57x2y2z2 /19xyz = (57/19) * (x2y2z2)/xyz =3xyz
ತಾಳೆ:
(ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ = (3xyz * 19xyz) +0 = (3*19)*xyz*xyz +0= 57x1+1y1+1z1+1+0=57x2y2z2 - ಭಾಜ್ಯ
ಈ ಮೇಲಿನ ಸಮಸ್ಯೆಯಲ್ಲಿ ಗಮನಿಸಬೇಕಾದ ಅಂಶಗಳು:
3 ಎನ್ನುವುದು 57/19 ಅಂದರೆ ಏಕ ಪದಗಳ ಸಹಗುಣಕಗಳ ಭಾಗಲಬ್ಧ.
ಅದೇರೀತಿ xyz ಎಂಬುದು ಚರಾಕ್ಷರಗಳ ಭಾಗಲಬ್ಧ..
ಭಾಗಲಬ್ಧವು ಎರಡು ಭಾಗಗಳನ್ನು ಹೊಂದಿದೆ - ಸಂಖ್ಯಾ ಸಹಗುಣಕ ಮತ್ತು ಚರಾಕ್ಷರಗಳು. ಇದನ್ನು ಪಡೆಯುವುದು ಹೇಗೆ?
ಸಮಸ 1: 4023m2n2-6032m2n -8042m3 ಈ ಬೀಜೋಕ್ತಿಯನ್ನು (-2012m2) ದಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
4023= (2x201)3= (2)3x(201)3, 6032 = (3x201)2 = (3)2x(201)2, 8042 = (4x201)2 = (4)2x(201)2
[4023m2n2-6032m2n -8042m3 n4]/(-2012m2)
=[(2)3*(201)3 m2n2-(3)2*(201)2 m2n -(4)2*(201)2m3 n4]/(-2012m2)
= -[ (2)3*(201) n2-(3)2* n -(4)2*m1 n4] = - (8*201* n2-9n -16mn4)
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = (-2012m2)*[-(8*201* n2+9n +16mn4)]+0
= +(2012m2)*(8*201* n2 -2012m2*9n -2012m2*16mn4) +0
= 8*2013m2 n2 -9*2012m2+2n-16*2012m2+1n4)
= 23* 2013m2 n2 - 32 *2012m4n-42*2012 m3 n4
= (2*201)3m2n2-(3*201)2 m2n –(4*201)2 m3 n4
= 4023 m2n2 - 6032 m2n - 8042 m3 n4
= ಭಾಜ್ಯ.
ಸಮಸ್ಯೆ 2 : 2a4 b3+ 8a2 b2 ವನ್ನು 2ab ಯಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
(2a4 b3+ 8a2 b2)/2ab = (2a4 b3/2ab) + (8a2 b2 / 2ab) = a3 b2 +4a b
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = 2ab*(a3 b2 +4a b) +0= 2a4 b3+ 8a2 b2 = ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 1: ಮೊತ್ತ ಮೊದಲಿಗೆ 7+x3-6x (ತ್ರಿಪದ)ವನ್ನ ಒಂದು ದ್ವಿಪದ x+1 ರಿಂದ ಭಾಗಿಸುವಾ.
ಪರಿಹಾರ:
ಭಾಜ್ಯವು 3ನೇ ಘಾತದ ಬೀಜೋಕ್ತಿ, ಭಾಜಕವು 1ನೇ ಘಾತದ ದ್ವಿಪದ.
ಹಂತ |
ವಿಧಾನ |
|
1 |
ಭಾಜ್ಯ ಮತ್ತು ಭಾಜಕಗಳನ್ನು ಅವುಗಳ ಘಾತ ಸೂಚಿಯ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿ ಬರೆಯಿರಿ. |
|
2 |
ಯಾವುದೇ ಘಾತದ ಬೀಜ ಪದ ಇಲ್ಲದಿದ್ದರೆ ಸಹಗುಣಕ ‘0’ ಹಾಕಿ, ಬರೆಯಿರಿ x3 -6x+7 ನ್ನು (x3 +0x2-6x+7) ಎಂದು ಬರೆಯಿರಿ. |
|
3 |
ಭಾಜ್ಯದ ಮೊದಲ ಪದವನ್ನು ಭಾಜಕದ ಮೊದಲ ಪದದಿಂದ ಭಾಗಿಸಿ ( x3/x = x2). ಆದ್ದರಿಂದ x2 ವು ಭಾಗಲಬ್ಧ ಮೊದಲನೇ ಪದ ಇದನ್ನು ಮೇಲ್ತುದಿಯಲ್ಲಿ ಬರೆಯಿರಿ. |
|
4 |
ಭಾಜಕವನ್ನು ಭಾಗಲಬ್ಧ ಮೊದಲ ಪದ (x2) ರಿಂದ ಗುಣಿಸಿ, ಭಾಜ್ಯದ ಕೆಳಗೆ ಬರೆಯಿರಿ (=x3+ x2) |
|
5 |
ಹಂತ 4 ರಲ್ಲಿ ಬಂದ ಉತ್ತರವನ್ನು ಭಾಜ್ಯದಿಂದ ಕಳೆಯಿರಿ.( x3 +0x2 ) – (x3+ x2) = - x2 |
|
6 |
ಭಾಜ್ಯದ ಮುಂದಿನ ಪದವನ್ನು ತೆಗೆದುಕೊಂಡು,(=-6x) ಹಂತ 5ರ ಉತ್ತರದ ಮುಂದೆ ಬರೆಯಿರಿ. ಆಗ -x2 – 6x. ಇದು ಹೊಸ ಭಾಜ್ಯ. |
|
7 |
ಹಂತ 3 ರಿಂದ 6 ರವರೆಗಿನದ್ದನ್ನು ಪುನರಾವರ್ತಿಸಿ, ಭಾಗಾಕಾರವನ್ನು ಮುಂದುವರಿಸಿ |
|
8 |
ಶೇಷದ ಘಾತ ಸೂಚಿಯು ಭಾಜಕದ ಘಾತ ಸೂಚಿಗಿಂತ ಕಡಿಮೆಯಾದಾಗ ಭಾಗಾಕಾರ ಕ್ರಿಯೆ ನಿಲ್ಲಿಸಿ. |
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = (x+1)* (x2-x-5)+12
= x*(x2-x-5) +1*(x2-x-5)+12
= (x3-x2-5x)+ (x2-x-5)+12 = x3-x2+ x2-5x-x -5+12
= x3-0x2-6x +7
= x3-6x +7 – ಇದು ದತ್ತ ಭಾಜ್ಯ.
ಸಮಸ್ಯೆ 2: x5 -9x2 +12x-14 ದಿಂದ x -3 ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
ಭಾಜ್ಯವು ಘಾತಾಂಶದ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿಯೇ ಇದೆ. ಆದರೆ ಬಹುಪದದಲ್ಲಿ ಇಲ್ಲದ x ನ ಘಾತಾಂಕಗಳನ್ನು ಸೊನ್ನೆ ಸಹಗುಣಕ ಸೇರಿಸಿ ಬರೆಯಬೇಕು.
xಭಾಜ್ಯ: x5 +0x4 +0x3-9x2 +12x-14.
ಭಾಜಕವು ಘಾತಾಂಕದ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿಯೇ ಇದೆ.
- | x5 -3x4
- |3x4 +0x3
- |3x4 -9x3
- |9x3 -9x2
- |9x3 -27x2
- |18x2+12x
- |18x2 -54x
-|66x-14
-|66x-198
184
ತಾಳೆ:
ಭಾಗಲಬ್ಧವನ್ನು ಭಾಜ್ಯದಿಂದ ಗುಣಿಸಿ, ಶೇಷವನ್ನು ಕೂಡಿಸಿ ತಾಳೆ ನೋಡಬಹುದು. ಆದರೆ ಬೀಜೋಕ್ತಿಯು ತುಂಬಾ ದೊಡ್ಡದಿರುವುದರಿಂದ, ತಾಳೆ ನೋಡಲು ಬೇರೆ ವಿಧಾನ ಬಳಸುವಾ.
x=2 ಆದಾಗ ಫಲಿತಾಂಶವನ್ನು ನೋಡುವಾ.
x=2 ಆದಾಗ,
ಭಾಜಕ =x5 -9x2 +12x-14 = 25 -9*22 +12*2-14
= 32-36+24-14
= 6
ಭಾಜಕ = x-3 =2-3 = -1
ಭಾಗಲಬ್ಧ =
= 24 +3*23 +9*22+18*2+66
= 16+24+36+66=178
ಈಗ,
ಭಾಗಲಬ್ಧ*ಭಾಜಕ + ಶೇಷ = 178*-1+184
= -178+184
= 6 - ದತ್ತ ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 3: (6p3 -19p2 -8p) ಯನ್ನು (p2 -4p+2) ರಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
6p+5
p2 -4p+2
( -) |6p3 -24p2 +12p --à ---- (1) {= 6p*(p2 -4p+2)}
(=) |+5 p2 -20p --à -----(2) {ಸಮೀಕರಣ (1) ನ್ನು ಭಾಜ್ಯದಿಂದ ಕಳೆಯಿರಿ}
( -) | 5p2 - 20p+10 --à -----(3) {= 5*(p2 -4p+2)}
(=) -10 --à ಶೇಷ {ಸಮೀಕರಣ (3) ರಿಂದ (2)ನ್ನು ಕಳೆಯಿರಿ. }
ತಾಳೆ:
ಭಾಗಲಬ್ಧ*ಭಾಜಕ = (6p+5)* (p2 -4p+2)
= 6p* p2 +6p*-4p+6p*2+5* p2+5*-4p+5*2
= 6p3 -24p2+12p+5p2-20p+10
= 6p3 -19p2-8p+10
ಭಾಗಲಬ್ಧ*ಭಾಜಕ + ಶೇಷ = (6p3 -19p2-8p+10)-10
= 6p3 -19p2-8p - ದತ್ತ ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 4: a5 +b5 ನ್ನು (a+b) ಯಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
a+b
(-) |a5+ a4b
(=) - a4b+0
(-) |a4b-a3b2
(=) a3b2+0
(-) | a3b2+ a2b3
(=) - a2b3+0
(-) |-a2b3-ab4
(=) ab4 + b5
(-) |ab4 + b5
(=) 0
ಅಭ್ಯಾಸ: ಭಾಜಕ*ಭಾಗಲಬ್ಧ+ಶೇಷ = ಭಾಜ್ಯ ಆಗುವುದೋ ಎಂದು ನೋಡಿ.
ಶೇಷ ಪ್ರಮೇಯ ಮತ್ತು ಅಪವರ್ತನ ಪ್ರಮೇಯ (Remainder & Factor Theorem):
4023m2n2 - 6032m2n - 8042m3 n4 ಈ ಬಹುಪದೋಕ್ತಿಯನ್ನು ಗಮನಿಸಿ.
ಇಲ್ಲಿ ಬಹುಪದೋಕ್ತಿಯು m ಮತ್ತು n ಎನ್ನುವ ಚರಾಂಶಗಳನ್ನು ಹೊಂದಿರುವುದರಿಂದ ಈ ಬಹುಪದೋಕ್ತಿಯನ್ನು f(m,n) ಎಂದು ಗುರುತಿಸಬಹುದು.
f(m,n) = 4023m2n2 - 6032m2n - 8042m3 n4
ಬಹುಪದೋಕ್ತಿ f(x), x ಚರಾಕ್ಷರವನ್ನು ಮಾತ್ರ ಹೊಂದಿದ್ದು ಈ ಕೆಳಗಿನ ಬೀಜೋಕ್ತಿಯ ರೂಪದಲ್ಲಿ ಇರುತ್ತದೆ.
f(x) = anxn+ an-1xn-1+ an-2xn-2+ ………. a2x2+ a1x+ a0 = 0
ಇಲ್ಲಿ a0,a1,a2,……… an-1,an ಗಳು ಸ್ಥಿರಾಂಕಗಳು ಮತ್ತು an 0
a0,a1,a2,……… an-1 ಮತ್ತು an ಗಳನ್ನು ಅನುಕ್ರಮವಾಗಿ x0,x1,x2……. xn-1 ಮತ್ತು xn ಗಳ ‘ಸಹಗುಣಕ (co-efficients)’ ಮತ್ತು n ನ್ನು ಬಹುಪದೋಕ್ತಿಯ ‘ಮಹತ್ತಮ ಘಾತ(Degree)’ ಎನ್ನುತ್ತೇವೆ.
anxn, an-1xn-1,………. a2x2, a1x1, a0 ಗಳನ್ನು ಬಹುಪದೋಕ್ತಿಯ ‘ಪದಗಳು(Term)’ ಎನ್ನುತ್ತೇವೆ..
f(x) = x5 - 9x2 + 12x - 14 ಆಗಿರಲಿ
x = 0 ಎಂದು ಆದೇಶಿಸಿದಾಗ f(0) = 0 -9*0 +12*0 -14 = -14
x = 1 ಎಂದು ಆದೇಶಿಸಿದಾಗ f(1) = 1-9+12-14= -10
x = -1 ಎಂದು ಆದೇಶಿಸಿದಾಗ f(-1) = -36
f(a) = a5 - 9a2 + 12a - 14
a ಯ ಯಾವುದೇ ಬೆಲೆಗೆ (x=a), f(x) = 0 ಆದಾಗ ‘a’ ಯನ್ನು ಸಮೀಕರಣ f(x)=0 ನ ಮೂಲ(root) ಎನ್ನುತ್ತೇವೆ.
ಬಹುಪದೋಕ್ತಿ f(x) ನಲ್ಲಿ f(a)=0 ಆದಾಗ ‘a’ ಯನ್ನು ಬಹುಪದೋಕ್ತಿಯ 'ಶೂನ್ಯ(zero)' ಎನ್ನುತ್ತೇವೆ.
ಭಾಜ್ಯ = ಭಾಜಕ*ಭಾಗಲಬ್ಧ + ಶೇಷ
ವಾಸ್ತವಿಕ ಸಂಖ್ಯೆಗಳಿಗೆ ಹೇಗೆ ಮೇಲಿನ ಸಂಬಂಧ ಅನ್ವಯಿಸುವುದೋ ಅದೇ ರೀತಿ ಈ ಸಂಬಂಧ ಬಹುಪದೋಕ್ತಿಗೂ ಅನ್ವಯಿಸುತ್ತದೆ.
ಮೇಲಿನ ಸಂಬಂಧವನ್ನು ಯೂಕ್ಲಿಡ್ ನ ಬಹುಪದೋಕ್ತಿಯ ಮೇಲಿನ ಭಾಗಾಕಾರದ ಅನುಪ್ರಮೇಯ(Lemma) ಎನ್ನುತ್ತೇವೆ.
f(x)= g(x)*q(x)+ r(x) ---(1)
[ ಇಲ್ಲಿ ಭಾಜಕ g(x) ವು ಭಾಜ್ಯ f(x) ನ್ನು ಭಾಗಿಸಿದಾಗ ಭಾಗಲಬ್ಧ q(x) ಮತ್ತು ಶೇಷ r(x) ದೊರಕುತ್ತದೆ. ಗಮನಿಸಿ: g(x) 0 ಮತ್ತು r(x) =0 ಅಥವಾ ಅದರ ಮಹತ್ತಮ ಘಾತ < g(x) ನ ಮಹತ್ತಮ ಘಾತ]
ಮೇಲಿನ (1) ರಲ್ಲಿ ಯಾವುದೇ ಮೂರು ಬಹುಪದೋಕ್ತಿಯನ್ನು ನೀಡಿದಾಗ ನಾಲ್ಕನೆಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ಈ ಕೆಳಗಿನಂತೆ ಕಂಡುಹಿಡಿಯಬಹುದು.
f(x), q(x) ಮತ್ತು r(x) ನೀಡಿದಾಗ g(x)= {f(x)-r(x)}/q(x)
f(x), g(x) ಮತ್ತು q(x) ನೀಡಿದಾಗ r(x)= f(x)-{ g(x) *q(x)}
ಭಾಗಾಕಾರ ಮಾಡದೇ, ಬಹುಪದೋಕ್ತಿಯನ್ನು ಭಾಗಿಸಿದಾಗ ಭಾಗಲಬ್ಧ ಮತ್ತು ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಸಾಧ್ಯವೇ?
2.11 ಸಮಸ್ಯೆ 1: f(x) = x3+4x2-6x+2 ನ್ನು g(x)= (x-3) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಭಾಗಲಬ್ಧ ಮತ್ತು ಶೇಷ ಕಂಡು ಹಿಡಿ
ಪರಿಹಾರ:
f(x)= g(x)*q(x)+ r(x) ಆದಾಗ r(x) ನ ಮಹತ್ತಮ ಘಾತ < g(x) ನ ಮಹತ್ತಮ ಘಾತ ಎಂದು ತಿಳಿದಿದೆ. ಆದುದರಿಂದ g(x) ನ ಮಹತ್ತಮ ಘಾತ 0 ಆಗಿರಲೇಬೇಕು. ಭಾಜ್ಯದ ಮಹತ್ತಮ ಘಾತ = 3 ಮತ್ತು ಭಾಜಕದ ಮಹತ್ತಮ ಘಾತ =1 ಆಗಿರುವುದರಿಂದ ಭಾಗಲಬ್ಧದ ಮಹತ್ತಮ ಘಾತ 2(=3-1) ಆಗಿರಲೇ ಬೇಕು.
r(x) = k (ಸ್ಥಿರಾಂಕ) ಹಾಗೆಯೇ a, b ಮತ್ತು c ನ ಯಾವುದೇ ಬೆಲೆಗೆ q(x) = ax2+bx+c ಆಗಿರಲಿ.
x3+4x2-6x+2 =(x-3)* (ax2+bx+c)+k= (ax3+bx2+cx)+(-3ax2-3bx-3c)+ k = ax3+x2(b-3a)+x(c-3b)+k-3c.
a=1;4=b-3a; -6=c-3b;2=k-3c (ಪದಗಳ ಸಹಗುಣಕಗಳನ್ನು ಸಮೀಕರಿಸಿದಾಗ)
a=1; b=4+3a; c=3b-6; k=2+3c
ಇನ್ನೂ ಸುಲಭೀಕರಿಸಿದಾಗ a=1, b=7, c=15 ಮತ್ತು k= 47
q(x) = ax2+bx+c
q(x) = x2+7x+15 ಮತ್ತು r(x) = 47
ತಾಳೆ:
x3+4x2-6x+2 = (x-3)* (x2+7x+15)+47 ಎಂದು ಪರೀಕ್ಷಿಸಿ.
ಒಂದು ಬಹುಪದೋಕ್ತಿಯನ್ನು ಇನ್ನೊಂದು ಬಹುಪದೋಕ್ತಿಯಿಂದ ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಲ್ಪಡುವಂತೆ ಬದಲಿಸಲು ಸಾಧ್ಯವೇ?
f(x)= g(x)*q(x)+ r(x)
f(x) ನ್ನು g(x) ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಬೇಕಾದರೆ r(x) ಶೂನ್ಯವಾಗಿರಲೇ ಬೇಕು.
ಸಮಸ್ಯೆ 2: x3+5x2+5x+8 ನಿಂದ ಎಷ್ಟನ್ನು ಕಳೆದರೆ ಅಥವಾ ಕೂಡಿಸಿದರೆ ಅದು x2+3x-2 ರಿಂದ ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಲ್ಪಡುತ್ತದೆ?
ಪರಿಹಾರ:
x3+5x2+5x+8 ನ್ನು x2+3x-2 ರಿಂದ ಭಾಗಿಸಿದಾಗ ನಮಗೆ ಸಿಗುವ ಶೇಷ:x+4
x3+5x2+5x+8 ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸಲ್ಪಡಬೇಕಾದರೆ ಶೇಷ 0 ಆಗಿರಬೇಕಾಗಿರುವುದರಿಂದ x3+5x2+5x+8 ರಿಂದ x+4 ನ್ನು ಕಳೆಯಬೇಕು.
ಉತ್ತರ = (x3+5x2+5x+8) – (x+4)= x3+5x2+5x+8-x-4 = x3+5x2+4x+4
ಅಧ್ಯಾಯ 2.10 ರಲ್ಲಿ ಕಲಿತಂತೆ ಭಾಗಾಕಾರ ಕ್ರಮದಲ್ಲಿ ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಲು ತುಂಬಾ ಸಮಯ ಬೇಕು. ಹಾಗಾದರೆ, ಶೇಷವನ್ನು ಮಾತ್ರ ಕಂಡುಹಿಡಿಯುವ ಸುಲಭ ದಾರಿ ಇದೆಯ?
ಅಧ್ಯಾಯ 2.10 ರಲ್ಲಿ ಬಿಡಿಸಿದ ಸಮಸ್ಯೆಗಳನ್ನು ಪರಿಶೀಲಿಸಿದಾಗ ಕೆಲವೊಂದು ಅಂಶಗಳು ಕಂಡುಬರುತ್ತವೆ.
ರ ಸಮಸ್ಯೆಯನ್ನು ತಿರುಗಿ ಪರಿಶೀಲಿಸುವ: 7+x3-6x ನ್ನು x+1 ರಿಂದ ಭಾಗಿಸಿ.
ಇಲ್ಲಿ ಭಾಜ್ಯವನ್ನು f(x) {‘x’ ನ ಸತ್ಪನ್ನ (Function)}ಎಂದು ಕರೆಯುತ್ತೇವೆ.}
f(x) = 7+x3-6x
ಈಗ f(a) ಯ ಬೆಲೆಯನ್ನು ‘a’ ಯ ಬೇರೆಬೇರೆ ಬೆಲೆಗಳಿಗೆ (1, 2,0,-1,-2) ಕಂಡುಹಿಡಿಯುವಾ.
f(1) = 2, f(0) =7, f(-1) = 12, f(-2) = 11.
ಈಗ ನಾವೇನು ನೋಡುತ್ತೇವೆ? f(-1)=12 – ಇದೇ ಶೇಷ.
(x4-2x3+x-7) ನ್ನು (x+2) ರಿಂದ ಭಾಗಿಸುವ ಲೆಕ್ಕವನ್ನು ಪರಿಶೀಲಿಸುವಾ. (ಸಮಸ್ಯೆ 2.10.3.2)
f(x) = x4-2x3+x-7
f(x) ನ ಬೆಲೆಯನ್ನು 'x' ನ ಬೇರೆ ಬೇರೆ ಬೆಲೆಗಳಿಗೆ( 1, 2, 0,-1,-2) ಕಂಡು ಹಿಡಿಯುವಾ
f(1) = -7, f(2) =-5, f(0) =-7, f(-1) =-5, f(-2)=23 ಯು ಶೇಷವಾಗಿರುತ್ತದೆ.
ಈಗ ಬೇರೆಬೇರೆ ಕೆಲವು ಭಾಜ್ಯ ಮತ್ತು ಭಾಜಕಗಳಿಗೆ ಶೇಷದ ತಃಖ್ತೆ ಮಾಡುವಾ.
ಭಾಜ್ಯ - f(x) |
ಭಾಜಕ g(x) |
ಶೇಷ r(x) |
ಶೇಷ = ಸತ್ಪನ್ನದ ಬೆಲೆf(k) |
x3-6x +7 |
x+1 |
12 |
f(-1) |
x4-2x3+x-7 |
x+2 |
23 |
f(-2) |
x+1 |
x+1 |
0 |
f(-1) |
x-1 |
x-1 |
0 |
f(1) |
x+a |
x+a |
0 |
f(-a) |
x-a |
x-a |
0 |
f(a) |
x2+4x+4 |
x+2 |
0 |
f(-2) |
ಈ ಮೇಲಿನ ಅಂಶಗಳನ್ನು ಗಮನಿಸಿದಾಗ ನಾವು ಹೀಗೆ ಹೇಳಬಹುದು:
ಒಂದು ಬಹುಪದೋಕ್ತಿ f(x) ನ್ನು (x+a) ರೂಪದ ಏಕಪದೋಕ್ತಿಯಿಂದ ಭಾಗಿಸಿದಾಗ ಬರುವ ಶೇಷವು f(-a) ಆಗಿರುತ್ತದೆ.
ಇದನ್ನು ಶೇಷ ಪ್ರಮೇಯ(Remainder Theorem) ಎನ್ನುತ್ತೇವೆ.
ಶೇಷ ಪ್ರಮೇಯದ ಸಾಧನೆ
ಸಾಧನೆ:
ಒಂದು ಬಹುಪದೋಕ್ತಿ f(x) ಯನ್ನು (x+a) ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ f(-a) ಆಗಿರುತ್ತದೆ ಎನ್ನುವುದೇ ಶೇಷ ಪ್ರಮೇಯ.
f(x) ನ್ನು (x+a) ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಸಿಗುವ q(x) ಮತ್ತು r(x) ಗಳು ಭಾಗಲಬ್ದ ಮತ್ತು ಶೇಷಗಳಾಗಿರಲಿ.
ಭಾಜ್ಯ = ಭಾಜಕ*ಭಾಗಲಬ್ಧ + ಶೇಷ
f(x) = q(x)*(x+a) + r(x)
ಗಮನಿಸಿ:
ಭಾಜಕ (=(x+a)) ದ ಮಹತ್ತಮ ಘಾತ :1.
ಶೇಷ (= r(x)) ದ ಮಹತ್ತಮ ಘಾತ < ಭಾಜಕದ ಮಹತ್ತಮ ಘಾತ.
ಅದುದರಿಂದ ಶೇಷದ ಮಹತ್ತಮ ಘಾತ = 0 ಆಗಿರುತ್ತದೆ, ಅಂದರೆ ಶೇಷವು x ಪದವನ್ನು ಹೊಂದಿರದೇ ಒಂದು ಸ್ಥಿರಾಂಕವಾಗಿರುತ್ತದೆ(= ‘r’)
f(x) = q(x)*(x+a)+r
ಮೇಲಿನ ಸಮೀಕರಣದಲ್ಲಿ x = -a ಎಂದು ಆದೇಶಿಸಿದಾಗ:
f(-a) = q(-a)*(-a+a)+r = q(-a)*0+r = r
ಅಂದರೆ ಪ್ರಮೇಯವನ್ನು ಸಾಧಿಸಿದಂತಾಯಿತು.
ಗಮನಿಸಿ: ಬಹುಪದೋಕ್ತಿ f(x),ನ್ನು (ax+b) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ = f(-b/a) [ ax+b = (x+b/a) ]
f(-a) = 0 ಆದಾಗ (x+a) ಯು ಬಹುಪದೋಕ್ತಿ f(x) ನ ಅಪವರ್ತನವಾಗಿರುತ್ತದೆ.
ಸಾಧನೆ:
f(-a) = 0 ಆಗಿರಲಿ.
ಶೇಷ ಪ್ರಮೇಯದಂತೆ f(x) ನ್ನು (x+a) ಯಿಂದ ಭಾಗಿಸಿದಾಗ ಸಿಗುವ ಶೇಷ = f(-a). ಇದು 0 ಆಗಿರುವುದರಿಂದ (x+a) ಯು f(x) ನ್ನು ನಿಶ್ಶೇಷವಾಗಿ ಭಾಗಿಸುತ್ತದೆ. ಅಂದರೆ (x+a) ಯು ಬಹುಪದೋಕ್ತಿ f(x) ನ ಅಪವರ್ತನವಾಗಿರುತ್ತದೆ
ಸಮಸ್ಯೆ3: (x3+2x2-x+6) ನ್ನು (x-3) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಬರುವ ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಇಲ್ಲಿ f(x) = x3+2x2-x+6
ಭಾಜಕ = x-3
ಶೇಷ ಪ್ರಮೇಯದಂತೆ ಭಾಜಕವು (x+a) ಆಗಿದ್ದರೆ, ಶೇಷವು f(-a) ಆಗಿರುತ್ತದೆ.
ಭಾಜಕ (x+a) ಆದರೆ , f(-(-3) = f(3) ಶೇಷವಾಗಿರುತ್ತದೆ.
f(x) ನಲ್ಲಿ x ನ ಬದಲಾಗಿ 3 ನ್ನು ಆದೇಶಿಸಿದಾಗ,
f(3) = 27+ 18-3+6 = 48 ಶೇಷ
ಸಮಸ್ಯೆ4: (4x4+2x3-3x2+8x+5a) ಯ ಒಂದು ಅಪವರ್ತನ (x+2) ಆದರೆ, ‘a’ ಯ ಬೆಲೆ ಕಂಡುಹಿಡಿ.
ಪರಿಹಾರ:
(x+2) ಎಂಬುದು f(x) ನ ಅಪವರ್ತನವಾದ್ದರಿಂದ ಶೇಷವು ಸೊನ್ನೆ. ಅಂದರೆ ಶೇಷ ಪ್ರಮೇಯದ ಪ್ರಕಾರ ಶೇಷ = f(-2)
ಆದರೆ f(-2) =0 (ದತ್ತ)
f(-2) = 4*16+2*(-8)-3*4 -16+5a
= 64-16-12-16+5a = 20 +5a
f(-2) =0 ಆಗಿರುವುದರಿಂದ 20+5a = 0 ಅಂದರೆ 5a = -20 ಅಂದರೆ a= -4
ತಾಳೆ:
a= -4 ಆಗಿರುವುದರಿಂದ, -4 ನ್ನು f(x) ನಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ
f(x) = 4x4+2x3-3x2+8x-20
f(-2) = 4*16+2(-8)-3*4 -16 -20 = 64-16-12-16-20 = 0
x+2 ವು 4x4+2x3-3x2+8x-20 ನ ಅಪವರ್ತನ ಎಂದು ಸಮರ್ಥಿಸುತ್ತದೆ.
ಸಮಸ್ಯೆ 5: 3x3+7x ನ ಅಪವರ್ತನವು 7+3x ಆಗಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸಿ.
ಪರಿಹಾರ:
f(x) = 3x3+7x
f(x) ನ ಅಪವರ್ತನವು 7+3x ಆಗಿದ್ದರೆ ಅದರ ಅಪವರ್ತನ 3*(7/3+x) ಆಗಿರಲೇ ಬೇಕು.
( m 0, n 0 ಮತ್ತು y=mn ಹಾಗೂ y f(x) ನ ಅಪವರ್ತನವಾಗಿದ್ದರೆ, m ಮತ್ತು n ಗಳೂ ಕೂಡ f(x ನ ಅಪವರ್ತನವಾಗಿರುತ್ತವೆ.)
f(-7/3) = 3(-7/3)3 +7(-7/3) = -343/9 -49/3 0
7+3x ನೀಡಿದ ಬಹುಪದೋಕ್ತಿಯ ಅಪವರ್ತನವಲ್ಲ.
ಗಮನಿಸಿ: 3x3+7x = x(3x2+7) ಆಗಿರುವುದರಿಂದ 7+3x ಅದರ ಅಪವರ್ತನವಲ್ಲ.
ಸಮಸ್ಯೆ 6: ಸಮೀಕರಣ x2-2x=0 ರ ಮೂಲಗಳು 0, 1, 2 ಆಗಿವೆಯೇ?
ಪರಿಹಾರ:
f(x) = x2-2x ಆಗಿರಲಿ.
f(0) = 02-2*0 = 0,
f(1) = 12-2 = -1
f(2) = 22-2*2 = 0
0 ಮತ್ತು 2 ಬಹುಪದೋಕ್ತಿಯ ಮೂಲಗಳು ಆದರೆ 1 ಅಲ್ಲ.
ಸಮಸ್ಯೆ 7: f(x) = x2+5x+p ಮತ್ತು q(x) = x2+3x+q ಸಾಮಾನ್ಯ ಅಪವರ್ತನವನ್ನು ಹೊಂದಿದೆ.
(i) ಸಾಮಾನ್ಯ ಅಪವರ್ತನ ಕಂಡು ಹಿಡಿ
(ii) (p-q)2= 2(3p-5q) ಎಂದು ತೋರಿಸಿ
ಪರಿಹಾರ:
f(x) ನ ಮಹತ್ತಮ ಘಾತ 2 ಮತ್ತು ಅದು ಅಪವರ್ತನ ಹೊಂದಿರುವುದರಿಂದ, ಅಪವರ್ತನದ ಮಹತ್ತಮ ಘಾತ 1 ಆಗಿರಲೇ ಬೇಕು.
ಅಪವರ್ತನ x-k ಆಗಿರಲಿ
f(k) = k2+5k+p = 0
x-k ಯು q(x) ನ ಅಪವರ್ತನ ಆಗಿರುವುದರಿಂದ
q(k) = k2+3k+q = 0
k2+5k+p = k2+3k+q: ಸುಲಭೀಕರಿಸಿದಾಗ
k = (1/2)(q-p)
ಆದುದರಿಂದ ಸಾಮಾನ್ಯ ಅಪವರ್ತನ = x-k = x - (1/2)(q-p)
= x + (1/2)(p-q)
K ನ ಬೆಲೆಯನ್ನು f(x) ನಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ
((q-p)/2)2+5(q-p)/2+p = 0
i.e. (p-q)2/4+5(q-p)/2+p = 0
i.e. (p-q)2+10(q-p)+4p = 0
i.e. (p-q)2 = 10p-10q-4p
= 6p-10q
= 2(3p-5q)
ಸಮಸ್ಯೆ 8: f(1/3) ಮತ್ತು f(3/2)=0 ಎಂದು ಕೊಟ್ಟಿರುವಾಗ 6x2-11x+3 ನ್ನು ಅಪವರ್ತಿಸಿ
ಪರಿಹಾರ:
f(x) = 6x2-11x+3
(x-1/3) ಮತ್ತು (x-3/2) ಗಳು f(x) ನ ಅಪವರ್ತನಗಳು ಎಂದು ನೀಡಿದೆ.
(x-1/3)*(x-3/2)
= x2 - (1/3)x – (3/2)x + 3/6
= x2 - (11/6)x +3/6
= (6x2-11x+3)/6.
ಎರಡೂ ಬದಿಯನ್ನು 6 ರಿಂದ ಗುಣಿಸಿದಾಗ
f(x) = 6x2-11x+3 = 6(x-1/3)*(x-3/2)
ಸಮಸ್ಯೆ 9: x3 +2x2 - 5x – 6 ನ ಅಪವರ್ತನ (x+1) ಆಗಿದ್ದು ಉಳಿದ ಅಪವರ್ತನವನ್ನು ಕಂಡುಹಿಡಿ.
ಸೂಚನೆ:
f(x) = x3 + 2x2- 5x - 6
f(-1) = -1+2+5-6 =0 ಆಗಿರುವುದರಿಂದ f(x) ನ ಅಪವರ್ತನ (x+1).
2.10 ರಲ್ಲಿ ಕಲಿತಂತೆ ದೀರ್ಘಭಾಗಾಕಾರದಂತೆ
f(x) = (x+1)(x2+x-6)
ಆದರೆ (x2+x-6)
= (x2+3x-2x-6)
= x(x+3)-2(x+3)
= (x+3)(x-2)
f(x) = (x+1)(x-2)(x+3)
ಸಮಸ್ಯೆ 10: ಒಂದು ವರ್ಗಬಹುಪದೋಕ್ತಿಯನ್ನು (x-1), (x+1) ಮತ್ತು (x-2) ಭಾಗಿಸಿದಾಗ ಶೇಷವು ಕ್ರಮವಾಗಿ 2,4 ಮತ್ತು 4 ಆಗಿದ್ದರೆ, ಆ ವರ್ಗಬಹುಪದೋಕ್ತಿಯನ್ನು ಕಂಡು ಹಿಡಿ.
ಪರಿಹಾರ:
f(x) = ax2+bx+c ಆಗಿರಲಿ.
f(1)=2, f(-1)=4 ಮತ್ತು f(2)=4 ಎಂದು ನೀಡಿದೆ.
ಆದರೆ f(1) = a+b+c, f(-1) = a–b+c ಮತ್ತು f(2) = 4a+2b+c
ರಲ್ಲಿ ವಿವರಿಸಿದಂತೆ ಈ ಸಮೀಕರಣವನ್ನು ಬಿಡಿಸಿದಾಗ
a=1, b=-1 ಮತ್ತು c=2
ಆದುದರಿಂದ ವರ್ಗಬಹುಪದೋಕ್ತಿಯು x2-x+2.
ಸಮಸ್ಯೆ 11: px2+qx+6 ನ್ನು (2x+1) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ 1 ಮತ್ತು 2qx2+6x+p ನ್ನು (3x-1) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ 2 ಉಳಿದರೆ, p ಮತ್ತು q ಕಂಡು ಹಿಡಿ.
ಪರಿಹಾರ:
f(x) = px2+qx+6, g(x) = 2qx2+6x+p ಆಗಿರಲಿ.
f(x) ನ್ನು (2x+1) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ = 1. ಆದುದರಿಂದ f(-1/2) = 1
p/4 –q/2+6 = 1
i.e. p-2q = -20 (ಸುಲಭೀಕರಿಸಿದಾಗ) ---à(1)
g(x) ನ್ನು (3x-1) ರಿಂದ ಭಾಗಿಸಿದಾಗ ಶೇಷ = 2. ಆದುದರಿಂದ g(1/3) = 2
2q/9 + 6/3 +p = 2
i.e. 9p+2q = 0 (ಸುಲಭೀಕರಿಸಿದಾಗ) ---à(2)
(1) ಮತ್ತು (2) ಬಿಡಿಸಿದಾಗ
p = -2 ಮತ್ತು q = 9
(x-a) ಭಾಜಕವು ಆದಾಗ
ದೀರ್ಘಭಾಗಾಕಾರ ಕ್ರಮಕ್ಕಿಂತ ಸುಲಭವಾಗಿ ಈ ವಿಧಾನದಲ್ಲಿ ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಬಹುದು. ಒಂದು ಸಮಸ್ಯೆಯನ್ನು ಆಧರಿಸಿ ಈ ವಿಧಾನವನ್ನು ಕಲಿಯಬಹುದು. (2.10.3 ಸಮಸ್ಯೆ 2 ನೋಡಿ).
x5 -9x2 +12x-14 ನ್ನು (x -3) ರಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
ಭಾಜ್ಯ x5 -9x2 +12x-14 ನ್ನು ಘಾತಾಂಕದ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿ ಬರೆದಾಗ ಅದು: 1x5 + 0x4 + 0x3 - 9x2 + 12x - 14.
ಇಲ್ಲಿ ಭಾಜಕದ ಸ್ಥಿರಾಂಕ -3
ಭಾಜಕ |
ಭಾಜ್ಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಹಾಗೆ ಕಂಬ ಸಾಲುಗಳು(2 ರಿಂದ) |
|
|||||
3 |
1 |
0 |
0 |
-9 |
12 |
-14 |
ಮೊದಲ ಅಡ್ಡ ಸಾಲು |
|
|
3(=3*1) |
9(= 3*3) |
27(= 3*9) |
54(= 3*18) |
198(= 3*66) |
2 ನೇ ಅಡ್ಡ ಸಾಲು |
|
1 |
3=(0+3) |
9(= 0+9) |
18(=-9+27) |
66(=12+54) |
184(=-14+198) |
3 ನೇ ಅಡ್ಡ ಸಾಲು |
ಭಾಗಲಬ್ಧವು 1x4+3x3+9x2+18x+54 ಆಗಿದ್ದು ಶೇಷವು 184, ಆಗಿರುವುದನ್ನು ಗಮನಿಸಿ. ಇದೇ ಉತ್ತರ 2.10.3 ಸಮಸ್ಯೆ 2 ರಲ್ಲಿ ನಮಗೆ ದೊರಕಿತ್ತು.
ಮೂಲ : ಫ್ರೀ ಗಣಿತ
ಕೊನೆಯ ಮಾರ್ಪಾಟು : 1/28/2020