ಬೀಜಗಣಿತದ ಸಮಸ್ಯೆಗಳನ್ನು ಪರಿಹರಿಸಲು ಬೀಜೋಕ್ತಿಗಳನ್ನು ಸುಲಭರೂಪಕ್ಕೆ ತರುವುದು ಬಹಳ ಅಗತ್ಯ. 5-(3a2-2a)( 6-3a2+2a) = (3a+1)(a-1) (3a-5)(a+1) ಎಂದು ನಿಮಗೆ ಗೊತ್ತೇ? a=1, -1 ಎಂಬ ಬೆಲೆಗಳಿಗೆ ಇದುಸರಿಯಿದೆಯೇ ಎಂದು ಪರೀಕ್ಷಿಸಿ.ಹಾಗಿದ್ದಲ್ಲಿ a ನ ಎಲ್ಲಾ ಬೆಲೆಗೆ ಇದು ಸರಿ ಹೊಂದುತ್ತದೆ ಎಂದು ಸಾಧಿಸುವುದು ಹೇಗೆ? ( ಸಮಸ್ಯೆ 6 ನ್ನು ನೋಡಿ) ಬೀಜೋಕ್ತಿಗಳನ್ನು ಎರಡು ಅಥವಾ ಹೆಚ್ಚು ಪದಗಳ (ಅಪವರ್ತನಗಳ)ಗುಣಲಬ್ಧವಾಗಿಬರೆಯುವ ಕ್ರಮವನ್ನು ಅಪವರ್ತಿಸುವಿಕೆ ಎನ್ನುವರು.ಬೀಜೋಕ್ತಿಗಳನ್ನು ಸುಲಭರೂಪಕ್ಕೆ ತರಲು ಅಪವರ್ತಿಸುವಿಕೆ ಅಗತ್ಯ.
ಬೀಜೋಕ್ತಿಗಳ ಮ. ಸಾ. ಅ ವನ್ನು ಹೊರಗೆ ತೆಗೆದು ಸುಲಭರೂಪಕ್ಕೆ ತರಬಹುದು. ಉದಾ:
4x2y, 8x3 ಮತ್ತು 12xy ಗಳ ಮ.ಸಾ.ಅ 4x
4x2y+8x3+12xy = 4x (xy+2x2+3y)
ಎಲ್ಲಾ ಸಂದರ್ಭಗಳಲ್ಲಿ ಸುಲಭ ರೂಪದಲ್ಲಿ ತರಲು ಸಾಧ್ಯವಾಗದೇ ಇರಬಹುದು ಉದಾ: 4x2+5y (ಏಕೆ ಎಂದು ಯೋಚಿಸಿ)
x2+mx +c ರೂಪದ ತ್ರಿಪದೋಕ್ತಿಯನ್ನು ಅಪವರ್ತಿಸುವುದು ಹೇಗೆ?
ಉದಾ: x2+x(a+b)+ab - ಈ ಬೀಜೋಕ್ತಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳುವಾ.
x2+x(a+b)+ab
= (x2+xa)+(xb+ab) ( ಪದಗಳ ಪುನರ್ಜೋಡಣೆ)
= x(x+a)+b(x+a) ( x2 ಮತ್ತು xa ನ ಸಾಮಾನ್ಯ ಪದ x, ಮತ್ತು xb ಮತ್ತು ab ನ ಸಾಮಾನ್ಯ ಪದ b )
= (x+a)(x+b)
ಆದ್ದರಿಂದ x+a ಮತ್ತು x+b ಗಳು x2+x(a+b)+ab ಈ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು.
ಅರ್ಥಾತ್ x2+x(a+b)+ab ಯನ್ನು x+a ಮತ್ತು x+b ಎಂಬ ಪದಗಳ ಗುಣಲಬ್ಧವಾಗಿ ಬರೆಯಬಹುದು
ಉದಾ:
x2+5x+6
=x2+3x+2x+6
=x(x+3)+2(x+3)
=(x+3)*(x+2)
x+3 ಮತ್ತು x+2 ಇವುಗಳು x2+5x+6 ರ ಅಪವರ್ತನಗಳು.
ಇವು x+a ಮತ್ತು x+b ರೂಪದಲ್ಲಿವೆ.
ಈ x+a ಮತ್ತು x+b ಎಂಬ ಅಪವರ್ತನಗಳು ಹೇಗಿವೆ?
a+b= 5 , ab=6 ರೂಪದಲ್ಲಿವೆ.
ಪರಿಶೀಲನೆಯಿಂದ, a=3 ಮತ್ತು b=2 ಬೆಲೆಗಳು a+b=5 ಮತ್ತು ab=6 ಎಂಬ ನಿಯಮಕ್ಕೆ ಬದ್ಧವಾಗಿವೆ.
ಆದ್ದರಿಂದಲೇ 5x ನ್ನು 3x+2x ಎಂದು ವಿಭಜಿಸಿದ್ದು.
ಬೇರೆ ಯಾವುದೇ ರೀತಿಯಲ್ಲಿ 5x ನ್ನು ವಿಭಾಗಿಸಲಾಗುವುದಿಲ್ಲ.
ಆದರೆ ಎಲ್ಲಾ ತ್ರಿಪದೋಕ್ತಿಗಳನ್ನು ಈ ರೀತಿ ಅಪವರ್ತಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ. ಅಂಥ ಬೀಜೋಕ್ತಿಗಳ ಬಗ್ಗೆ ಮುಂದೆ ತಿಳಿಯುವಾ
x2+5x+6 ಬೀಜೋಕ್ತಿಯು x2+mx +c ರೂಪದಲ್ಲಿದೆ m = 5 and c=6.
ಸಮಸ್ಯೆ 1: ಅಪವರ್ತಿಸಿ x2+27x+176
ಪರಿಹಾರ:
ಈಗ ನಾವು a+b=27 ab=176 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಬೇಕು.
176 ರ ಅಪವರ್ತನಗಳು: (2, 88), (4, 44), (8, 22), (16, 11).
176 ರ ಋಣ ಅಪವರ್ತನಗಳನ್ನು ಬಿಟ್ಟಿದ್ದೇವೆ. ಏಕೆಂದರೆ ಅವುಗಳ ಮೊತ್ತ ಧನಸಂಖ್ಯೆಯಾಗಲು ಸಾಧ್ಯವಿಲ್ಲ.
ಮೇಲಿನ ಗುಂಪುಗಳಲ್ಲಿ (16, 11) ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
ಇಲ್ಲಿ a= 16 ಮತ್ತು b=11
x2+27x+176 = x2+16x+11x+ 176
=x(x+16) +11(x+16)
=(x+16) (x+11)
x2+27x+176 ರ ಅಪವರ್ತನಗಳು: (x+16) ಮತ್ತು (x+11)
ತಾಳೆ:
(x+16)(x+11) ಇದು (x+a)*(x+b) ರೂಪದಲ್ಲಿದೆ a=16 , b=11
(x+16)*(x+11) = x2+ x(16+11)+ 16*11
= x2+27x+176 ದತ್ತ ಬೀಜೋಕ್ತಿ.
ಸಮಸ್ಯೆ 2 : ಅಪವರ್ತಿಸಿ x2-6x-135
ಪರಿಹಾರ:
a+b= -6 , ab= -135 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
-135 ರ ಅಪವರ್ತನಗಳು: (3,-45), (-3, +45), (5,-27), (-5, +27), (9,-15), (-9, +15)
ಈ ಜೋಡಿಗಳಲ್ಲಿ, 9-15 = -6 , 9*-15 = -135. ಈ ಜೋಡಿ ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
a= 9 , b= -15
x2-15x+9x -135
=x(x-15)+9(x-15)
=(x-15)(x+9)
x2-6x-135 ರ ಅಪವರ್ತನಗಳು:
(x-15) ಮತ್ತು (x+9)
ತಾಳೆ:
(x-15)(x+9) ಇದು (x+a)*(x+b) ರೂಪದಲ್ಲಿದೆ. a=-15, b=9
(x-15)*(x+9) = x2+ x(-15+9)+ (-15*9)= x2-6x-135 - ದತ್ತ ಬೀಜೋಕ್ತಿ.
ಸಮಸ್ಯೆ 3: ಅಪವರ್ತಿಸಿ, m2+4m-96
ಪರಿಹಾರ:
ಈಗ a+b= 4 ,ab= -96 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
(-96) ರ ಅಪವರ್ತನಗಳು: (2,-48), (-2, 48), (3,-32), (-3, +32), (4,-24), (-4, +24), (6,-16), (-6,16), (8,-12), (-8,12)
ಇವುಗಳಲ್ಲಿ - 8+12 = 4 , -8*12 = -96. ಈ ಜೋಡಿ ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
a= -8 , b=12
m2-8m+12m -96
=m(m-8)+12(m-8)
=(m-8)(m+12)
m2+4m-96 ರ ಅಪವರ್ತನಗಳು: (m-8) ಮತ್ತು (m+12)
ತಾಳೆ:
(m-8)(m+12) ಇದು (m+a)*(m+b) ರೂಪದಲ್ಲಿದ್ದು
a=-8, b=12
(m-8)*(m+12) = m2+ m(-8+12)+ -8*12
= m2+4m-96 - ದತ್ತ ಬೀಜೋಕ್ತಿ
ಈಗ, px2+mx +c ರೂಪದ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸುವಾ.ಇಲ್ಲಿ x2, ದ ಸಹಗುಣಕ 1 ರ ಬದಲಾಗಿ p.
ನಾವಿಲ್ಲಿ a+b=m ಮತ್ತು ab=pc ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
ಸಮಸ್ಯೆ 3: ಮೂರು ಅನುಕ್ರಮ ಸಮ ಸಂಖ್ಯೆಗಳ ಮೊತ್ತ 252. ಆದರೆ ಆ ಸಂಖ್ಯೆಗಳಾವುವು : ಅಪವರ್ತಿಸಿ 24x2-65x+21
ಪರಿಹಾರ:
ಈಗ ನಾವು a+b= -65 ಮತ್ತು ab= 24*21 =504 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
(24*21) ರ ಅಪವರ್ತನಗಳ ಜೊತೆಗಳು:(2,252), (-2,-252), (3, 138 ), (-3,-138), (4,126), (-4,-126), (6,83),
(-6,-83), (8,63), (-8,-63), (9,56), (-9,-56), (12,42), (-12,-42)
ಇವುಗಳಲ್ಲಿ, (-9-56) = -65 , -9*(-56) = 504=24*21 ಈ ಜೋಡಿ ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
a= -9 , b= -56
24x2-65x+21
=24x2-9x -56x+21 ( -65x ನ್ನು -9x-56x ಎಂದು ಬರೆದಿದೆ.)
=3x(8x-3) -7(8x-3) {(24x2 ಮತ್ತು , 9x. ಗಳ ಮ.ಸಾ.ಅ 3x
-56x ಮತ್ತು 21 ಗಳ ಮ.ಸಾ.ಅ -7)}
= (8x-3)(3x-7) ( 8x-3 ಸಾಮಾನ್ಯ ಪದ)
24x2-65x+21 ರ ಅಪವರ್ತನಗಳು: (8x-3) ಮತ್ತು (3x-7 )
ತಾಳೆ:
(8x-3)(3x-7)
=8x(3x-7)-3(3x-7) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿದಾಗ)
=24x2-56x -9x+21 (ಸುಲಭೀಕರಿಸಿದಾಗ)
=24x2-65x+21 – ದತ್ತ ಬೀಜೋಕ್ತಿ.
ಸಮಸ್ಯೆ 5: ಅಪವರ್ತಿಸಿ 6p2+11pq -10q2
ಪರಿಹಾರ:
ಈಗ, a+b= 11 , ab= 6*(-10) =-60 ಆಗುವಂತೆ a ಮತ್ತು b ಗಳನ್ನು ಕಂಡುಹಿಡಿಯಬೇಕು.
-60 ರ ಅಪವರ್ತನಗಳ ಜೊತೆಗಳು: (2,-30), (-2,30),(3, -20 ),(-3,20) (4,-15), (-4,15), (5,-12),(-5,12),(6,-10),
(-6,10)
ಇವುಗಳಲ್ಲಿ,- 4+15 = 11 , -4*15 = -60 a=15, b=-4. ಈ ಜೋಡಿ ನಮಗೆ ಬೇಕಾದ a ಮತ್ತು b ಗಳ ಸಂಬಂಧಕ್ಕೆ ಅನುಸಾರವಾಗಿದೆ.
6p2+11pq -10q2
=6p2+15pq -4pq-10q2( 11pq = 15pq-4pq)
=3p(2p+5q) -2q(2p+5q)
=(2p+5q)(3p-2q)
6p2+11pq -10q2 ರ ಅಪವರ್ತನಗಳು: 2p+5q ಮತ್ತು 3p-2q
ತಾಳೆ:
(2p+5q)(3p-2q)
=2p(3p-2q)+5q(3p-2q) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿದಾಗ)
=6p2-4pq +15qp-10q2 (ಸುಲಭೀಕರಿಸಿದಾಗ)
= 6p2+11pq -10q2 - ದತ್ತ ಬೀಜೋಕ್ತಿ.
ಸಮಸ್ಯೆ 6: ಅಪವರ್ತಿಸಿ, 5-(3a2-2a) (6-3a2+2a)
ಪರಿಹಾರ:
ಇಲ್ಲಿ x =3a2-2a ಎಂದು ತೆಗೆದುಕೊಳ್ಳುವಾ.
ಆದ್ದರಿಂದ 5-x( 6-x) ವನ್ನು ಅಪವರ್ತಿಸಬೇಕು.
5-x( 6-x)
= 5 -6x + x2
= x2 -6x +5 = x2 -5x -x+5
= x(x-5)-1(x-5)
= (x-1)(x-5)
x ನ ಬೆಲೆಯನ್ನು ಆದೇಶಿಸಿದಾಗ,
5-(3a2-2a)( 6-3a2+2a)
= (3a2-2a -1) (3a2-2a-5)
ಆದರೆ 3a2-2a -1 = 3a2-3a+a -1 = 3a(a-1)+1(a-1) = (3a+1)(a-1)
3a2-2a-5 = 3a2+3a -5a-5 = 3a(a-1)-5(a+1) = (3a-5)(a+1)
5-(3a2-2a)( 6-3a2+2a) = (3a+1)(a-1) (3a-5)(a+1)
ತಾಳೆ:
ಇಂತಹ ಸಮಸ್ಯೆಗಳನ್ನು ಬಿಡಿಸುವುದನ್ನು ಇಲ್ಲಿ ಕಲಿಯುತ್ತೇವೆ.
ವ್ಯಾಖ್ಯೆ: ಎರಡು ಬೀಜೋಕ್ತಿಗಳ ಸಮಾನತೆಯನ್ನು ಸೂಚಿಸುವ ಹೇಳಿಕೆಯನ್ನು ‘ಸಮೀಕರಣ’ (Equations) ಎನ್ನುತ್ತೇವೆ. ಸಮೀಕರಣದಲ್ಲಿ ಬರುವ ಒಂದು ಅಥವಾ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಅವ್ಯಕ್ತ ಪದಗಳ ರಾಶಿಯನ್ನು ‘ಚರಾಕ್ಷರ’ಗಳೆನ್ನುವರು.
ಉದಾ: x+2 =5
ಸಮೀಕರಣದ ಎಡಭಾಗವನ್ನು (LHS) ಎಂತಲೂ ಬಲಭಾಗವನ್ನು (RHS) ಎಂತಲೂ ಹೇಳುತ್ತೇವೆ.
ಗಮನಿಸಿ:
6=6 ಇದು ಸರಿತಾನೆ? ======è (1)
ಇಲ್ಲಿ ಎಡಭಾಗ (LHS) ದಲ್ಲಿ 6 ಇದೆ. ಬಲಭಾಗದಲ್ಲೂ 6 ಇದೆ. ಇವೆರಡೂ ಪರಸ್ಪರ ಸಮ.
ಈಗ 2 ನ್ನು ಸಮೀಕರಣ (1)ರ ಎರಡೂ ಬದಿಗಳಿಗೆ ಕೂಡಿಸುವಾ.
ಎಡಭಾಗ (LHS) =6+2=8 , ಬಲಭಾಗ (RHS) = 6+2 =8
ಈಗಲೂ ಕೂಡಾ ಎರಡೂ ಭಾಗಗಳು ಪರಸ್ಪರ ಸಮ.
ಈಗ ಸಮೀಕರಣ (1) ಎರಡೂ ಬದಿಗಳಿಂದ 3 ನ್ನ ಕಳೆಯುವಾ.
ಎಡಭಾಗ = 6-3 =3 , ಬಲಭಾಗ = 6-3 =3
ಈಗಲೂ ಕೂಡಾ ಎರಡೂ ಭಾಗಗಳು ಸಮ.
ಈಗ ಎರಡೂ ಬದಿಗಳಿಗೆ 6 ರಿಂದ ಗುಣಿಸಿ
ಎಡಭಾಗ = 6*6=36 , ಬಲಭಾಗ = 6*6 =36
ಈಗಲೂ ಎಡಭಾಗ = ಬಲಭಾಗ.
ಸಮೀಕರಣ (1)ರ ಎರಡೂ ಬದಿಗಳನ್ನು 3 ರಿಂದ ಭಾಗಿಸಿ.
ಎಡಭಾಗ = 6/3=2 , ಬಲಭಾಗ = 6/3=2
ಎಡಭಾಗ = ಬಲಭಾಗ.
ಸಮಾನತೆಯ ಗುಣಗಳು(ಸ್ವಯಂ ಸಿದ್ಧಗಳು) (Properties of Equality):(Axioms)
LHS=RHS ಇರುವ ಯಾವುದೇ ಸಮೀಕರಣದಲ್ಲಿ ಮೇಲಿನ ಯಾವುದಾದರೂ ಕ್ರಿಯೆಯನ್ನು ನಡೆಸಿದರೆ,ಫಲಿತಾಂಶವೂ LHS=RHS ಆಗಿರುತ್ತದೆ.
ವ್ಯಾಖ್ಯೆ: ಏಕ ಪರಿಮಾಣಾತ್ಮಕವಿರುವ ಬಹುಪದಗಳಾಗಲೀ, ಮೊದಲನೇ ಘಾತವಿರುವ ಚರಾಕ್ಷರಗಳನ್ನಾಗಲೀ ಹೊಂದಿರುವ ಸಮೀಕರಣಗಳೇ ರೇಖಾತ್ಮಕ ಸಮೀಕರಣಗಳು. (‘linear equation’)
ಉದಾ: x+2 =5, 3*(a-5) =6, ½ x -4/5 = 3x+7.
ಆದರೆ x2-4 =0 ಇದು ರೇಖಾತ್ಮಕ ಸಮೀಕರಣವಲ್ಲ (ಏಕೆಂದರೆ x ನ ಘಾತಾಂಕ 2)
ಉದಾಹರಣೆ1:
x-3 = 1 ಈ ಹೇಳಿಕೆಯನ್ನು ಗಮನಿಸಿ. ಇಲ್ಲಿ x ಒಂದು ಚರಾಕ್ಷರ.
ಈ ಹೇಳಿಕೆಯನ್ನ ಹೀಗೂ ಹೇಳಬಹುದು: “xನ ಬೆಲೆಯನ್ನು ಕಂಡು ಹಿಡಿಯಿರಿ- ಹೇಗೆಂದರೆ ಅದರಲ್ಲಿ 3 ನ್ನ ಕಳೆದಾಗ ಫಲಿತಾಂಶ 1 ಆಗಬಹುದು.”
ಈಗ x-3 =1 ಹೇಳಿಕೆಯಲ್ಲಿನ x ಗೆ ಬೇರೆಬೇರೆ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸುವಾ.
1. x = 1 ಆಗಲು ಸಾಧ್ಯವೆ? ಇಲ್ಲ. ಏಕೆಂದರೆ 1-3 =-2
2. x = 2 ಆಗಲು ಸಾಧ್ಯವೆ? ಇಲ್ಲ. ಏಕೆಂದರೆ 2-3 =-1
3. x =5 ಆಗಲು ಸಾಧ್ಯವೆ? ಇಲ್ಲ. ಏಕೆಂದರೆ 5-3 =2
4. x =4 ಆಗಲು ಸಾಧ್ಯವೆ? ಹೌದು 4-3=1.
ಈ ರೀತಿಯಲ್ಲಿ xನ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಲು ತುಂಬಾ ಸಮಯಬೇಕು.
ಆದರೆ ಗಣಿತ ಶಾಸ್ತ್ರದಲ್ಲಿ ಇದಕ್ಕೆ ಸುಲಭ ವಿಧಾನವಿದೆ.
ದತ್ತ ಹೇಳಿಕೆಯ ಎರಡೂಬದಿಗೆ 3ನ್ನೇ ಕೂಡಿಸುವಾ.
x-3+3= 1+3
x+0 = 4.
x= 4
ಇಲ್ಲಿ ನಾವೀಗ ಒಂದೇ ಪರಿಮಾಣ(=3)ವನ್ನು ಎರಡೂ ಬದಿಗಳಿಗೆ ಕೂಡಿಸಿದ್ದೇವೆ.
ಕೂಡಿಸಲು 3ನ್ನೇ ಯಾಕೆ ತೆಗೆದು ಕೊಂಡಿದ್ದೇವೆ?
ನಮಗೆ ಎಡಭಾಗದಲ್ಲಿ x ಬಿಟ್ಟು ಉಳಿದ ಯಾವ ಸಂಖ್ಯೆಯೂ ಬೇಡ. ಅದನ್ನು ತೆಗೆಯಲಿಕ್ಕಾಗಿ -3 ನ್ನು ತೆಗೆಯಲು 3 ನ್ನ ಕೂಡಿಸಬೇಕಾಯಿತು
ಉದಾಹರಣೆ 2: 6x+4 = 3x+10 ಆದರೆ x ನ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಿರಿ.
ಇಲ್ಲಿ: 6x+4
ಬಲಭಾಗ: 3x+10
ಹಂತ 1:
3x ನ್ನ ಎರಡೂ ಬದಿಗಳಿಂದ ಕಳೆಯಿರಿ.(ಯಾಕೆಂದರೆ ಬಲಭಾಗದಲ್ಲಿರುವ ಚರಾಕ್ಷರವನ್ನು ತೆಗೆಯಬೇಕು.)
ಬಲಭಾಗ = 3x+10-3x= 10
ಎಡಭಾಗ= 6x+4-3x = 3x+4
2 ನೇ ಸ್ವಯಂಸಿದ್ಧದಿಂದ, ಬಲಭಾಗ= ಎಡಭಾಗ.
ಹಂತ 2:
ಈಗ ಎಡಭಾಗದಲ್ಲಿರುವ 4 ನ್ನ ತೆಗೆಯಬೇಕು.ಆದ್ದರಿಂದ ಎರಡೂಬದಿಗಳಿಂದ 4ನ್ನ ಕಳೆಯಿರಿ
ಎಡಭಾಗ= 3x+4-4=3x
ಬಲಭಾಗ = 10-4 = 6
2 ನೇ ಸ್ವಯಂಸಿದ್ಧದಿಂದ, ಬಲಭಾಗ= ಎಡಭಾಗ.
ಹಂತ 3
ಎಡಭಾಗದ x ನ ಸಹಗುಣಕ 3ರಿಂದ ಎರಡೂ ಬದಿಗಳನ್ನ ಭಾಗಿಸಿ.
ಎಡಭಾಗ= 3x/3 =x
ಬಲಭಾಗ = 6/3 =2
4 ನೇ ಸ್ವಯಂಸಿದ್ಧದಿಂದ, ಬಲಭಾಗ= ಎಡಭಾಗ.
x=2
ಈಗ ಮೊದಲೆರಡು ಹಂತಗಳಲ್ಲಿ ನಾವೇನು ಮಾಡಿದ್ದೇವೆ?
ಮೊದಲು ಎರಡೂ ಬದಿಗಳಿಂದ 3xನ್ನ ಕಳೆದು, ನಂತರ ಸ್ಧಿರಾಂಕ 4ನ್ನ ಕಳೆದಿದ್ದೇವೆ.
ಇದರ ಅರ್ಥ: 3xನ್ನ ಮತ್ತು 4ರ ಸಂಕಲನದ ವಿಲೋಮ (-3x ಮತ್ತು-4) ನ್ನ ಎರಡೂ ಬದಿಗಳಿಗೆ ಕೂಡಿಸಿದ್ದು.
ಅಥವಾ 3x ನ ಚಿಹ್ನೆ ಬದಲಾವಣೆ ಮಾಡಿ, ಇನ್ನೊಂದು ಬದಿಗೆ ಹಾಕಿದ್ದೇವೆ.
ಅದೇರೀತಿ 4 ರ ಚಿಹ್ನೆ ಬದಲಾಯಿಸಿ ಇನ್ನೊಂದು ಬದಿಯಲ್ಲಿ ಬರೆದಿದ್ದೇವೆ.
ಈಗ ಹಂತಗಳನ್ನು ಕ್ರೋಢೀಕರಿಸುವಾ:
ಹಂತ |
ಹೇಳಿಕೆ |
ವಿವರಣೆ |
1 |
6x+4= 3x+10 |
ದತ್ತ ಸಮೀಕರಣ |
2 |
6x+4-3x =10 i.e. 3x+4 =10 |
ಬಲಭಾಗದಿಂದ ಎಡಭಾಗಕ್ಕೆ 3x ಚಿಹ್ನೆ ಬದಲಾಯಿಸಿಕೊಂಡು ಹೋಗಿದೆ.. |
3 |
3x= 10-4 i.e. 3x =16 |
4 ಎಡಭಾಗದಿಂದ ಬಲಭಾಗಕ್ಕೆ ಚಿಹ್ನೆ ಬದಲಾಯಿಸಿಕೊಂಡು ಹೋಗಿದೆ. |
4 |
x=2 |
ಸುಲಭರೂಪಕ್ಕೆ ತಂದಿದೆ(ಎರಡೂ ಬದಿಯನ್ನು 3 ರಿಂದ ಭಾಗಿಸಿದೆ) |
ತಾಳೆ
ಸಮೀಕರಣ (1) ರಲ್ಲಿ x ನ ಬದಲಾಗಿ 2 ನ್ನ ಆದೇಶಿಸಿ.
ಎಡಭಾಗ= 6*2+4 = 16
ಬಲಭಾಗ= 3*2+10 =16
ಬಲಭಾಗ= ಎಡಭಾಗ.=16 ; x=2 ಇದು ಸರಿಯಾದ ಉತ್ತರ.
ವ್ಯಾಖ್ಯೆ
ಯಾವ ಚರಾಕ್ಷರದ ಬೆಲೆಯನ್ನು ಸಮೀಕರಣದಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ, ಎರಡೂ ಕಡೆ (ಎಡಭಾಗ ಮತ್ತು ಬಲಭಾಗ) ಸಮವಾಗುವುದೋ, ಆ ಅವ್ಯಕ್ತ ಪದದ ಬೆಲೆಯನ್ನು ಕಂಡು ಹಿಡಿಯುವುದನ್ನು ‘ಸಮೀಕರಣದ ಪರಿಹಾರ (’‘solution’)ಕಂಡು ಹಿಡಿಯುವುದು ಎನ್ನುತ್ತೇವೆ. ಇದನ್ನೇ ‘ಸಮೀಕರಣ ಬಿಡಿಸುವುದು’ ಎಂತಲೂ ಕರೆಯುತ್ತೇವೆ.
ಮೇಲಿನ ಉದಾಹರಣೆಯಲ್ಲಿ x =2 - ಇದು ಸಮೀಕರಣದ ಪರಿಹಾರ.ಈ ಮೇಲಿನ ಸಮೀಕರಣಕ್ಕೆ x=1 ಪರಿಹಾರವಲ್ಲ.ಏಕೆಂದರೆ 1ನ್ನು x ಸ್ಥಾನದಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ LHS = 10 ,RHS=13 ಆಗುತ್ತದೆ. ಹೀಗಾಗಿ LHS
ಸಮಸ್ಯೆ 1 : ಈ ಸಮೀಕರಣ ಬಿಡಿಸಿ (x ನ ಬೆಲೆ ಕಂಡು ಹಿಡಿ): 5*(2x-3) = 2*(3x-7)
ಪರಿಹಾರ:
ಹಂತ |
ಹೇಳಿಕೆ |
ವಿವರಣೆ |
1 |
5*(2x-3) = 2*(3x-7) |
ಪರಿಹಾರ |
2 |
10x -15 = 6x -14 |
ದತ್ತ ಸಮೀಕರಣ |
3 |
10x -6x= -14+15 |
ಸುಲಭರೂಪಕ್ಕೆ ತಂದಿದೆ. |
4 |
4x = 1:i,e x = 1/4 |
6x ಮತ್ತು 15 ಇವುಗಳನ್ನು ಚಿಹ್ನೆ ಬದಲಾಯಿಸಿ ಇನ್ನೊಂದು ಬದಿಗೆ ವರ್ಗಾಯಿಸಿದೆ. |
ತಾಳೆ
1/4 ನ್ನ x ದತ್ತ ಸಮೀಕರಣದಲ್ಲಿ ಆದೇಶಿಸಿ.
ಎಡಭಾಗ= 5*(2*1/4 -3) = 5*(1/2-3) = 5*(-5/2) = -25/2
ಬಲಭಾಗ= 2*(3*1/4-7) = 2*(3/4-7) = 2*(-25/4) = -25/2
ಎಡಭಾಗ= ಬಲಭಾಗ= -25/2, x =1/4 ಇದು ಸರಿಯಾದ ಪರಿಹಾರ.
ಸಮಸ್ಯೆ 2 : x ನ ಬೆಲೆ ಕಂಡುಹಿಡಿ .
= 1/2
ಪರಿಹಾರ:
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು ವರ್ಗಮಾಡಿ.
(x-2)/(x+1) = 1/4
ಅಡ್ಡ ಗುಣಕಾರ ಮಾಡಿ.
4(x-2) = x+1
i.e. 4x – 8 = x+1 (ಸುಲಭರೂಪಕ್ಕೆ ತಂದಿದೆ.)
i.e. 4x –x = 1+8 ( ವರ್ಗಾಯಿಸಿದೆ.)
i.e. 3x = 9
x=3
ತಾಳೆ:
xನ ಬೆಲೆ 3ನ್ನ ದತ್ತ ಸಮೀಕರಣದಲ್ಲಿ ಆದೇಶಿಸಿ. = 1/2
ಸಮಸ್ಯೆ 3: ಮೂರು ಅನುಕ್ರಮ ಸಮ ಸಂಖ್ಯೆಗಳ ಮೊತ್ತ 252. ಆದರೆ ಆ ಸಂಖ್ಯೆಗಳಾವುವು?
ಪರಿಹಾರ:
ಹಂತ 1 : ಮೊದಲ ಸಮ ಸಂಖ್ಯೆ x ಆಗಿರಲಿ
ಹಂತ 2 : ಮುಂದಿನ ಅನುಕ್ರಮ ಸಮ ಸಂಖ್ಯೆಗಳು = (x+2) ಮತ್ತು (x+4).
ಹಂತ 3 : x+(x+2)+(x+4) = 3x+6 = 252. (ದತ್ತ)
3x+6 = 252
3x = 252-6=246
x = 82
ಮೂರು ಅನುಕ್ರಮ ಸಮ ಸಂಖ್ಯೆಗಳು 82(=x),
84(=x+2)
86(=x+4)
ತಾಳೆ:
82, 84, 86 ಈ ಮೂರು ಅನುಕ್ರಮ ಸಮಸಂಖ್ಯೆಗಳನ್ನು ಕೂಡಿಸಿ. ಮೊತ್ತ = 252
ಸಮಸ್ಯೆ 4: ಒಂದು ಹಡಗು ಪ್ರವಾಹದ ದಿಕ್ಕಿನಲ್ಲಿ ಒಂದು ಬಂದರಿನಿಂದ ಇನ್ನೊಂದು ಬಂದರಿಗೆ 9 ಗಂಟೆಗಳಲ್ಲಿ ತಲಪುವುದು. ಪ್ರವಾಹದ ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ಅದೇ ದೂರವನ್ನು ಪ್ರಯಾಣ ಮಾಡಲು 10 ಗಂಟೆಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳುವುದು. ಪ್ರವಾಹದ ವೇಗ ಗಂಟೆಗೆ 1ಕಿ.ಮಿ. ಇದ್ದರೆ, ಎರಡು ಬಂದರುಗಳಿಗಿರುವ ದೂರವನ್ನು ಕಂಡು ಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
= 180 ಕಿ.ಮೀ. |
|
ತಾಳೆ:
ಪ್ರವಾಹದ ದಿಕ್ಕಿನಲ್ಲಿ ಹಡಗಿನ ವೇಗ= (ದೂರ/ಸಮಯ)- ಪ್ರವಾಹದ ವೇಗ= (180/9)-1 = (20-1) ಕಿ.ಮೀ./ಗಂ=19 ಕಿ.ಮೀ./ಗಂ
ಪ್ರವಾಹದ ವಿರುದ್ಧದಲ್ಲಿ ಹಡಗಿನ ವೇಗ= (ದೂರ/ಸಮಯ)+ ಪ್ರವಾಹದ ವೇಗ= (180/10) +1 = (18+1) ಕಿ.ಮೀ./ಗಂ=19 ಕಿ.ಮೀ./ಗಂ
ಈ ಮೇಲಿನಿಂದ ನಮ್ಮ ಪರಿಹಾರ ಸರಿಯಾಗಿದೆ ಎಂದು ತಿಳಿಯಬಹುದು.
ಸಮಸ್ಯೆ 5: ಒಂದು ಸಂಖ್ಯೆಯಲ್ಲಿ ಎರಡು ಅಂಕಿಗಳಿವೆ. ದಶಕಸ್ಥಾನದ ಅಂಕೆಯು ಏಕಸ್ಥಾನದ ಅಂಕದ ಎರಡರಷ್ಟಿದೆ. ಸಂಖ್ಯೆಯ ಅಂಕಗಳನ್ನು ಅದಲು ಬದಲು ಮಾಡಿದಾಗ ಬರುವ ಸಂಖ್ಯೆಯು ಮೂಲ ಸಂಖ್ಯೆಗಿಂತ 27 ಕಡಿಮೆ ಇದ್ದರೆ ಮೂಲ ಸಂಖ್ಯೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
1 ಸಂಖ್ಯೆಯ ಏಕ ಸ್ಥಾನದ ಅಂಕೆ x ಆಗಿರಲಿ. ದಶಕಸ್ಥಾನದ ಅಂಕೆಯು ಏಕಸ್ಥಾನದ ಅಂಕೆಯ 2 ರಷ್ಟಿರುವುದರಿಂದ, ದಶಕ ಸ್ಥಾನದ ಅಂಕೆ =2x. ಸಂಖ್ಯೆಯಲ್ಲಿ 2 ಅಂಕಿಗಳಿರುವುದರಿಂದ ಅದರ ಬೆಲೆ =10*ದಶಕ ಸ್ಥಾನದ ಅಂಕೆ+ ಏಕ ಸ್ಥಾನದ ಅಂಕೆ = 10*2x+x. =20x+x = 21 x -------------è (1) ಅಂಕಿಗಳನ್ನು ಅದಲು ಬದಲು ಮಾಡಿದಾಗ, ದಶಕ ಸ್ಥಾನದಲ್ಲಿ x ಬರುತ್ತದೆ, 2x ಏಕಸ್ಥಾನದಲ್ಲಿ ಬರುತ್ತದೆ. ಆಗ ಸಂಖ್ಯೆಯ ಬೆಲೆ = 10* ದಶಕ ಸ್ಥಾನದ ಅಂಕೆ + ಏಕಸ್ಥಾನದ ಅಂಕೆ. = 10*x+2x =10x+2x = 12 x --------------è ತಿರುಗಿಸಿದ ಸಂಖ್ಯೆ. ದತ್ತಾಂಶದಂತೆ, ಹೊಸ ತಿರುಗಿಸಿದ ಸಂಖ್ಯೆ = ಹಳೇ ಸಂಖ್ಯೆ – 27 10x+2x = 20x+x-27 12x = 21x-27 27 = 21x-12x(12x ಮತ್ತು 27ರ ಸ್ಥಾನ ಬದಲಿಸಿದಾಗ) 27 =9x x = 3. ಮೂಲ ಸಂಖ್ಯೆಯ ಬಿಡಿಸ್ಥಾನದ ಅಂಕೆ = 3, ಮೂಲ ಸಂಖ್ಯೆಯ ದಶಕಸ್ಥಾನದ ಅಂಕೆ = 3*2 = 6 ಮೂಲ ಸಂಖ್ಯೆ = 63 |
|
ತಾಳೆ:
ಮೂಲ ಸಂಖ್ಯೆ = 63
ಅಂಕೆಗಳನ್ನು ಅದಲು ಬದಲು ಮಾಡಿದಾಗ ಬರುವ ಸಂಖ್ಯೆ = 36(36 = 63 -27.)
ಇದು ದತ್ತಾಂಶಕ್ಕೆ ಸರಿಯಾಗಿದೆ.
ಸಮಸ್ಯೆ 6: ಒಂದು ಆಯತದ ಉದ್ದವು ಅಗಲಕ್ಕಿಂತ 4 ಸೆಂ.ಮೀ ಹೆಚ್ಚಿದೆ. ಸುತ್ತಳತೆಯು ಅಗಲಕ್ಕಿಂತ 11ಸೆಂ.ಮೀ. ಹೆಚ್ಚಿದ್ದಲ್ಲಿ ಆಯತದ ಉದ್ದ ಮತ್ತು ಅಗಲಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಹಂತ 1: ಆಯತದ ಅಗಲ x ಆಗಿರಲಿ. ಉದ್ದ = x+4.
ಆಯತದ ಸುತ್ತಳತೆ P = 2* ಉದ್ದ + 2* ಅಗಲ
= 2(x+4)+2x
= 2x+8+2x
P = 4x +8 --------------è (1)
ಆದರೆ ದತ್ತಾಂಶದಂತೆ, ಸುತ್ತಳತೆಯು ಅಗಲಕ್ಕಿಂತ 11ಸೆಂ.ಮೀ ಹೆಚ್ಚಿದೆ.
P = x+11 --------------è (2)
ಹಂತ 2 :
ಸಮೀಕರಣ (1) ಮತ್ತು (2) ರಿಂದ,
2x+8+2x = x+11
4x+8 = x+11
4x-x = 11-8(x ಮತ್ತು 8ರ ಸ್ಥಾನ ಬದಲಿಸಿದೆ.)
3x = 3
x = 1.
ಆಯತದ ಅಗಲ =11ಸೆಂ.ಮೀ., ಉದ್ದ = x+4 = 5 ಸೆಂ.ಮೀ.
ತಾಳೆ:
ಆಯತದ ಸುತ್ತಳತೆ P = 2* ಉದ್ದ + 2* ಅಗಲ
= 2*5+2*1
= 10+2
= 12 ಸೆಂ.ಮೀ
= 11 ಸೆಂ.ಮೀ +1 ಸೆಂ.ಮೀ
= 11 ಸೆಂ.ಮೀ + ಅಗಲ
ಸಮಸ್ಯೆ 7: ಒಂದು ಭಿನ್ನರಾಶಿಯಲ್ಲಿ ಅಂಶದ ಎರಡರಷ್ಟು ಛೇದಕ್ಕಿಂತ 2 ಹೆಚ್ಚಿದೆ.3ನ್ನ ಅಂಕ ಮತ್ತು ಛೇದ ಎರಡಕ್ಕೂ ಸೇರಿಸಿದಾಗ ಬರುವ ಭಿನ್ನರಾಶಿಯು 2/3 ಆದರೆ, ಮೂಲ ಭಿನ್ನರಾಶಿಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಹಂತ 1: ಭಿನ್ನರಾಶಿಯ ಅಂಶವು x ಆಗಿರಲಿ.
ಅಂಶದ ಎರಡರಷ್ಟು = ಛೇದಕ್ಕಿಂತ 2 ಹೆಚ್ಚು.
2x = ಛೇದ +2.
ಛೇದ= 2x-2
ಮೂಲ ಭಿನ್ನರಾಶಿ = x/2x-2
3 ನ್ನ ಛೇದಕ್ಕೆ ಕೂಡಿಸಿದಾಗ , ಹೊಸ ಛೇದ = (2x-2) +3=2x+1
3 ನ್ನ ಅಂಶಕ್ಕೆ ಕೂಡಿಸಿದಾಗ ಹೊಸ ಅಂಶ = x+3
ಹೊಸ ಭಿನ್ನರಾಶಿ = (x+3)/ (2x+1)
ದತ್ತಾಂಶದಂತೆ ಹೊಸ ಭಿನ್ನರಾಶಿ 2/3
ಹಂತ 2 : 2/3 = (x+3)/(2x+1) --------------è(1)
ಅಡ್ಡ ಗುಣಕಾರ ಮಾಡಿದಾಗ,
2*(2x+1) =3 (x+3) --------------è(2)
4x+2 =3x+9 (3x ಮತ್ತು 2 ನ್ನ ಪರಸ್ಪರ ವರ್ಗಾಯಿಸಿದೆ.)
4x-3x= 9-2
x= 7
ಮೂಲ ಭಿನ್ನರಾಶಿಯ ಛೇದ = 2x-2 =14-2=12
ಮೂಲ ಭಿನ್ನರಾಶಿ = 7/12
ತಾಳೆ:
ಮೂಲ ಭಿನ್ನರಾಶಿ = 7/12
3ನ್ನ ಅಂಕ ಮತ್ತು ಛೇದಗಳಿಗೆ ಕೂಡಿಸಿದಾಗ = 10/15 = 2/3 - ದತ್ತ
ಸಮಸ್ಯೆ 8: ದೊಡ್ಡಭಾಗವನ್ನು ಚಿಕ್ಕಭಾಗದಿಂದ ಭಾಗಿಸಿದಾಗ, ಭಾಗಲಬ್ಧ 2 ಮತ್ತು ಶೇಷ 5 ಆಗಿರುವಂತೆ, 32 ನ್ನ ಎರಡು ಭಾಗ ಮಾಡಿ..
ಪರಿಹಾರ:
ದೊಡ್ಡಭಾಗ = ಆಗಿರಲಿ ಚಿಕ್ಕಭಾಗ = 32-x ಭಾಜ್ಯ= ಭಾಗಲಬ್ಧ*ಭಾಜಕ ± ಶೇಷ.. x/(32-x) = 2+ 5(±ಶೇಷ.)ಒಂದು ಘನಾಕೃತಿಯ ಉದ್ದ.(5x+2 ಸೆಂ.ಮೀ., ಅಗಲ (5x-1) ಸೆಂ.ಮೀ., ಎತ್ತರ (5x+3) ಸೆಂ.ಮೀ.ಇದ್ದರೆ ಘನಫಲವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಅಭ್ಯಾಸ: ಈ ಸಮೀಕರಣವನ್ನು ಬಿಡಿಸಿ(x =23 ,ಇನ್ನೊಂದು ಸಂಖ್ಯೆ = 9) |
ಸಮಸ್ಯೆ 9: x2-9/( x2+5) = -5/9 ಆಗಿರುವ ಸಮೀಕರಣದಲ್ಲಿ x ನ ಧನಾತ್ಮಕ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ದತ್ತಾಂಶದಂತೆ x2-9/( x2+5) = -5/9
ಅಡ್ಡ ಗುಣಾಕಾರ ಮಾಡಿದಾಗ 9(x2-9) = -5(x2+5)
ಸಂಕ್ಷೇಪಿಸಿದಾಗ 9x2-81 = -5x2 -25
ಸ್ಥಾನ ಬದಲಾಯಿಸಿದಾಗ 14x2 = 56
x2 = 4
x = +2 ಅಥವಾ -2
ತಾಳೆ:
ದತ್ತ ಸಮೀಕರಣದಲ್ಲಿ x=2 ನ್ನು ಆದೇಶಿಸಿದಾಗ, LHS = -5/9 = RHS, ಆದ್ದರಿಂದ ಇದು ಸರಿಯಾದ ಪರಿಹಾರ.
ಸಮಸ್ಯೆ 10: ದುಂಬಿಗಳ ಸಮೂಹದಲ್ಲಿ 1/5 ರ ಭಾಗ ಕದಂಬ ವೃಕ್ಷಕ್ಕೂ, 1/3 ನೇ ಭಾಗ ಶಿಲೀಂಧ್ರಕ್ಕೂ ಹೊರಟವು. ಅವೆರಡರ ವ್ಯತ್ಯಾಸದ ಮೂರರಷ್ಟು ಕುಟಜ ವೃಕ್ಷಕ್ಕೂ ಹೋದ ಮೇಲೆ ಉಳಿದ ಒಂದೇ ಒಂದು ದುಂಬಿಯು ಕೇತಕಮಾಲತೀ ಪುಷ್ಪದ ಸುಗಂಧದಿಂದ ಆಕರ್ಷಿಸಲ್ಪಟ್ಟು ಆಕಾಶದಲ್ಲಿ ಹಾರಾಡುತ್ತಿತ್ತು. ಹಾಗಾದರೆ ಎಲೈ ಲೀಲಾವತಿ, ದುಂಬಿಗಳ ಒಟ್ಟು ಸಂಖ್ಯೆಎಷ್ಟು? (ಲೀಲಾವತಿ ಶ್ಲೋಕ 56)
ಪರಿಹಾರ:
ಒಟ್ಟು ಸಂಖ್ಯೆ x ಇರಲಿ.
ಹಂತ |
ಎಲ್ಲಿಗೆ |
ಎಷ್ಟು |
1 |
ಕದಂಬಕ್ಕೆ |
(x/5) |
2 |
ಶಿಲೀಂಧ್ರಕ್ಕೆ |
(x/3) |
3 |
ಮೇಲಿನವುಗಳ ವ್ಯತ್ಯಾಸ |
(x/3) – (x/5) = (2x/15) |
4 |
ಕುಟಜಕ್ಕೆ |
3*(2x/15)=(2x/15) |
5 |
ಉಳಿದದ್ದು |
1 |
x- {(x/5)+(x/3)+(2x/5) =1
{15x-(3x+5x+6x)/15} =1
x=15
ತಾಳೆ:
ಕದಂಬಕ್ಕೆ 3, ಶಿಲೀಂಧ್ರಕ್ಕೆ 5, ಕುಟಜಕ್ಕೆ 6 { =3*(5-3)} ಉಳಿದದ್ದು 1
ಸಮಸ್ಯೆ 11: ಒಬ್ಬ ಯಾತ್ರಿಕನು ತನ್ನ ಹಣದ ಅರ್ಧ ಭಾಗವನ್ನು ಪ್ರಯಾಗದಲ್ಲಿಯೂ, ಉಳಿದುದರ 2/9 ಭಾಗವನ್ನು ಕಾಶಿಯಲ್ಲಿಯೂ, ಉಳಿದುದರ 1/4 ಭಾಗವನ್ನು ತೆರಿಗೆಗಳಿಗೂ, ಇನ್ನುಳಿದುದರ 6/10 ಭಾಗವನ್ನು ಗಯೆಯಲ್ಲಿಯೂಖರ್ಚುಮಾಡಿದ ನಂತರ ಉಳಿದ 63 ನಿಷ್ಕಗಳನ್ನು(ಹಣದ ಅಳತೆ) ಮನೆಗೆ ತಂದರೆ, ಯಾತ್ರೆಗೆ ತೆಗೆದು ಕೊಂಡು ಹೋದ ಹಣ ಎಷ್ಟು?(ಲೀಲಾವತಿ ಶ್ಲೋಕ 55)
ಪರಿಹಾರ:
ಒಟ್ಟು ಸಂಖ್ಯೆ x ಇರಲಿ.
ಹಂತ |
ಎಲ್ಲಿ/ಏತಕ್ಕೆ |
ಎಷ್ಟು |
ನಂತರ ಉಳಿದದ್ದು |
1 |
ಪ್ರಯಾಗ |
(x/2) |
x-(x/2) = (x/2) |
2 |
ಕಾಶಿ |
(2/9)*(x/2)=(x/9) |
(x/2)-(x/9) = (7x/18) |
3 |
ತೆರಿಗೆ |
(1/4)*(7x/18) =(7x/72) |
(7x/18) - (7x/72)= (21x/72) =(7x/24) |
4 |
ಗಯೆ |
(6/10)*(7x/24)=(7x/40) |
(7x/24)- (7x/40) ={(35x-21x)/120}=(7x/60) |
5 |
ಉಳಿದದ್ದು |
63 |
|
(7x/60) =63
x=540
ತಾಳೆ:
ನೀವೇ ಮಾಡಿ
ನಾವು ಈಗಾಗಲೇ ಕೆಲವು ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸಲು ಕಲಿತಿದ್ದೇವೆ.
ಉದಾ:
ಸಂ. |
ಬೀಜೋಕ್ತಿ |
ಅಪವರ್ತನಗಳು |
1 |
(p-q)2- 3(p-q) |
(p-q){(p-q)-3} |
2 |
2x(a-4b)+3y(a-4b) |
(a-4b)(2x+3y) |
3 |
m2(pq+r)+mn(pq+r)+ n2(pq+r) |
(pq+r) (m2+mn+ n2) |
ಪಾಠ 2.5 ರಲ್ಲಿ px2+mx +c ರೂಪದ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸಿದ್ದೇವೆ.
ನಿತ್ಯಸಮೀಕರಣಗಳು / ಸೂತ್ರಗಳನ್ನುಪಯೋಗಿಸಿ ಅಪವರ್ತಿಸುವುದು (Factorisation using identities/formulae):
ಪಾಠ 2.3 ರಲ್ಲಿ ಕೆಳಗಿನ ಸಮೀಕರಣಗಳನ್ನು ನೋಡಿದ್ದೇವೆ.
ಕ್ರ.ಸಂ. |
ಸಮೀಕರಣ |
ವಿಸ್ತರಣೆ |
ಅಪವರ್ತನಗಳು |
1 |
(a+b)2 |
a2+b2+2ab |
(a+b) ಮತ್ತು (a+b) |
2 |
(a-b)2 |
a2+b2-2ab |
(a-b) ಮತ್ತು (a-b) |
3 |
(a+b)(a-b) |
a2-b2 |
(a+b) ಮತ್ತು (a-b) |
4 |
(x+a)*(x+b) |
x2+x(a+b)+ab |
(x+a) ಮತ್ತು (x+b) |
ಸಮಸ್ಯೆ 1 : ನಿತ್ಯ ಸಮೀಕರಣವನ್ನುಪಯೋಗಿಸಿ ಅಪವರ್ತಿಸಿ 9p2+12pq +4q2
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿಯನ್ನು 9p2 +4q2+12pq. ಎಂದು ಬರೆಯುವಾ. ಇದು a2+b2+2ab ರೂಪದಲ್ಲಿದೆ. a2= 9p2 , b2= 4q2 , 2ab=12pq
9p2 = 3p*3p =(3p)2
4q2 = 2q*2q= (2q)2
12pq = 2*3p*2q
a=3p and b=2q
ದತ್ತ ಬೀಜೋಕ್ತಿಯನ್ನು a2+b2+2ab ರೂಪದಲ್ಲಿರುವುದರಿಂದ, ಅದರ ಅಪವರ್ತನಗಳು: (a+b) ಮತ್ತು (a+b)
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (3p+2q) ಮತ್ತು (3p+2q)
ತಾಳೆ:
(3p+2q)(3p+2q)
=3p(3p+2q)+2q(3p+2q) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿರಿ.)
=9p2+6pq +6qp+4q2 (ಸಂಕ್ಷೇಪಿಸಿದಾಗ.)
= 9p2+12pq +4q2 - ಇದು ದತ್ತ ಬೀಜೋಕ್ತಿ
ಸಮಸ್ಯೆ 2: ಸೂಕ್ತ ಸಮೀಕರಣದ ಸಹಾಯದಿಂದ 36x2-60x +25 ಅಪವರ್ತಿಸಿ.
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿ: 36x2 +25-60x. E°è a2= 36x2, b2= 25=52 ಮತ್ತು -2ab=-60x
(6x)2 +(5)2 -2*6x*5
ಇದು a2+b2-2ab ರೂಪದಲ್ಲಿದೆ. a=6x ,b=5.
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (a-b) ,(a-b).
= (6x-5) ಮತ್ತು (6x-5).
ತಾಳೆ:
(6x-5) (6x-5)
=6x(6x-5)-5(6x-5) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿರಿ.)
=36x2-30x -30x+25 (ಸಂಕ್ಷೇಪಿಸಿದಾಗ)
= 36x2-60x +25 - ದತ್ತ ಬೀಜೋಕ್ತಿ
ಸಮಸ್ಯೆ 3 : ಸೂಕ್ತ ಸಮೀಕರಣ ಉಪಯೋಗಿಸಿ ಅಪವರ್ತಿಸಿ: (x+2)2+18(x+2) +81.
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿ ಯನ್ನು ಹೀಗೆ ಬರೆಯುವಾ: (x+2)2 +81+18(x+2).
ಇದು a2+b2+2ab ರೂಪದಲ್ಲಿದೆ. a2= (x+2)2 , b2= 81=92
2ab=18(x+2)
a=(x+2),b=9 2ab = 2(x+2)*9 =18(x+2)
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: a2+b2+2ab ರೂಪದಲ್ಲಿರುವುದರಿಂದ ಅದರ ಅಪವರ್ತನಗಳು: (a+b) ಮತ್ತು (a+b)
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (x+2+9) (x+2+9)
=(x+11) ಮತ್ತು (x+11)
ತಾಳೆ:
(x+11) ನ್ನ (x+11) ರಿಂದ ಗುಣಿಸಿ, ದತ್ತ ಬೀಜೋಕ್ತಿಯನ್ನು ವಿಸ್ತರಿಸಿ, ತಾಳೆನೋಡಿ.
ಸಮಸ್ಯೆ 4: ಸೂಕ್ತ ಸಮೀಕರಣ ಉಪಯೋಗಿಸಿ ಅಪವರ್ತಿಸಿ: p4/16- q2/64
ಪರಿಹಾರ:
ದತ್ತ ಬೀಜೋಕ್ತಿಯು a2-b2 ರೂಪದಲ್ಲಿದೆ.
a2= p4/16= (p2/4)2 , b2= q2/64 = (q/8)2
a=p2/4 ,b=q/8.
ದತ್ತ ಬೀಜೋಕ್ತಿಯು a2-b2 ರೂಪದಲ್ಲಿರುವುದರಿಂದ, ಅದರ ಅಪವರ್ತನಗಳು (a+b) ಮತ್ತು (a-b).
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (p2/4+q/8) ಮತ್ತು (p2/4-q/8).
ತಾಳೆ:
(p2/4+q/8)(p2/4-q/8)
=p2/4(p2/4-q/8)+q/8(p2/4-q/8) (ಪ್ರತೀ ಪದವನ್ನು ಗುಣಿಸಿರಿ.)
=(p2/4)2-p2q/32 +qp2/32 –(q/8)2 (ಸಂಕ್ಷೇಪಿಸಿದಾಗ.)
= p4/16- q2/64 - ದತ್ತ ಬೀಜೋಕ್ತಿ
2.8.1 ಸಮಸ್ಯೆ 5: ನಿತ್ಯಸಮೀಕರಣದಿಂದ ಅಪವರ್ತಿಸಿ: 8(x+1/x)2-18(x-1/x)2
ಪರಿಹಾರ:
8 ಮತ್ತು 18 ಇವೆರಡೂ ಪೂರ್ಣವರ್ಗಗಳಲ್ಲ
ಆದರೆ 8 =2*4 , 18 =2*9.
4=22 9=33
8(x+1/x)2-18(x-1/x)2 = 2{4(x+1/x)2-9(x-1/x)2}.
ಈಗ 4(x+1/x)2-9(x-1/x)2 ಇದು a2-b2 ರೂಪದಲ್ಲಿದೆ.
a2= 4(x+1/x)2 =(2(x+1/x))2
b2=(3(x-1/x))2
ಈಗ a=2(x+1/x) , b=3(x-1/x)
ಬೀಜೋಕ್ತಿಯು a2-b2 ರೂಪದಲ್ಲಿರುವುದರಿಂದ, ಅಪವರ್ತನಗಳು (a+b) , (a-b)
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (2(x+1/x) + 3(x-1/x)) ಮತ್ತು (2(x+1/x) - 3(x-1/x))
ಇಲ್ಲಿ 2 ಸಾಮಾನ್ಯ ಅಪವರ್ತನ.
ದತ್ತ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: 2 , (2(x+1/x) + 3(x-1/x))
(2(x+1/x) - 3(x-1/x))
ಅಭ್ಯಾಸ: ತಾಳೆ ನೋಡಿ: 2(2(x+1/x) + 3(x-1/x))(2(x+1/x) - 3(x-1/x))= 8(x+1/x)2-18(x-1/x)2
ಸಮಸ್ಯೆ 6: ಎರಡು ಸಂಖ್ಯೆಗಳ ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸ 400. ಸಂಖ್ಯೆಗಳ ವ್ಯತ್ಯಾಸ 8 ಆದರೆ, ಸಂಖ್ಯೆಗಳು ಯಾವುವು? (ಲೀಲಾವತಿ: ಶ್ಲೋಕ 59)
ಸಂಖ್ಯೆಗಳು x,y ಆಗಿರಲಿ. ಆಗ
x2 -y2 =400
x-y= 8 ( x= y+8) ------(1)
x2 -y2 = (x+y)*(x –y) {a2-b2 =(a+b)*(a-b)}
= 8(x+y) ( x-y =8)
400 = 8(x+y) ( x2 -y2 =400)
(x+y) = 50 ( 8 ರಿಂದ ಭಾಗಿಸಿ)
y+8+y =50 ( (1) ರಂತೆ)
2y = 42 (ಸುಲಭೀಕರಿಸಿ)
y =21
x= 29 ( (1) ರಂತೆ)
ಅಭ್ಯಾಸ:
29-21 =8
292-212 = ??
(x+a)*(x+b) = x2+x(a+b)+ab - ಈಗಾಗಲೇ ನೋಡಿದ್ದೇವೆ.
ಈಗ ಮೂರು ದ್ವಿಪದೋಕ್ತಿಗಳು: (x+a)*(x+b)*(x+c) ಯ ಗುಣಲಬ್ಧ ನೋಡುವಾ.
(x+a)*(x+b)*(x+c)
= {(x+a)*(x+b)}*(x+c)
= {x2+x(a+b)+ab}*(x+c)
= x2(x+c)+x(a+b)*(x+c) + ab(x+c) ({x2+x(a+b)+ab} ರ ಪ್ರತೀ ಪದವನ್ನು (x+c) ಯ ಪ್ರತೀಪದದೊಂದಿಗೆ ಗುಣಿಸಿದೆ.)
= x3+ x2c + x(a+b)*x+x(a+b)*c + abx+abc ( x(a+b) ರ ಪ್ರತೀ ಪದವನ್ನು (x+c) ಯ ಪ್ರತೀಪದದೊಂದಿಗೆ ಗುಣಿಸಿದೆ.))
= x3+ x2c + x2(a+b)+x(a+b)*c + abx+abc ವಿಸ್ತರಿಸಿದಾಗ.)
= x3+ x2(c+a+b)+xac+xbc + abx+abc ವಿಸ್ತರಿಸಿ,ಸುಲಭೀಕರಿಸಿದಾಗ.)
= x3+ x2(a+b+c)+x(ac+bc+ ab)+abc ಸುಲಭೀಕರಿಸಿದಾಗ.)
= x3+ (a+b+c) x2+(ab+bc+ca)x+abc ಪುನರ್ಜೋಡಣೆ.)
ಮೇಲಿನ ಸಮೀಕರಣದಲ್ಲಿ b=a , c=a ಹಾಕುವಾ.
ಆಗ, (x+a)(x+a)(x+a) = x3+ (a+a+a) x2+(a*a+a*a+a*a)x+a*a*a
= x3+ 3ax2+3a2x+ a3
= x3+ 3ax(x+a)+ a3
ಈಗ x ನ್ನa ಯಿಂದಲೂ, a ಯನ್ನು b ಯಿಂದಲೂ (a+b)3 = a3+ 3ab(a+b)+ b3
‘b’ ಇರುವಲ್ಲಿ (–b) ಯನ್ನು ಆದೇಶಿಸಿದರೆ,
(a-b)3 = a3+ 3a*-b(a-b)+ (-b)3
= a3-3ab(a-b)-b3
ಸಮಸ್ಯೆ 1: 1.05*0.97*.98 ರ ಬೆಲೆ ಕಂಡುಹಿಡಿ
ಪರಿಹಾರ:
1.05 = 1+.05, 0.97 = 1-0.03 , 0.98 = 1-0.02.
x=1 and a=.05, b=-0.03 ಮತ್ತು c= -0.02
ದತ್ತಪದಗಳ ಗುಣಲಬ್ಧವನ್ನು (x+a)(x+b)(x+c) ರೂಪದಲ್ಲಿ ಬರೆಯಬಹುದು.
(x+a)(x+b)(x+c) = x3+ (a+b+c) x2+(ab+bc+ca)x+abc
1.05*0.97*.98
= 13+ (0.05-0.03-0.02) 12 +((0.05*-0.03) (–0.03* -0.02)(-0.02*0.05))1+ 0.05*-0.03*-0.02
= 1+ 0 12+(-0.0015+0.0006-0.0010)1+ 0.000030
= 1- 0.0019+0.00003 =0.998130
ತಾಳೆ:
ಕ್ಯಾಲ್ಕ್ಯುಲೇಟರ್ ಉಪಯೋಗಿಸಿ ತಾಳೆನೋಡಿ: 1.05*0.97*0.98 = 0.998130.
ಸಮಸ್ಯೆ 2 : ಒಂದು ಘನಾಕೃತಿಯ ಉದ್ದ.(5x+2 ಸೆಂ.ಮೀ., ಅಗಲ (5x-1) ಸೆಂ.ಮೀ., ಎತ್ತರ (5x+3) ಸೆಂ.ಮೀ.ಇದ್ದರೆ ಘನಫಲವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಘನಾಕೃತಿಯ ಗಾತ್ರ = ಉದ್ದ*ಅಗಲ*ಎತ್ತರ. ದತ್ತ ಘನಾಕೃತಿಯ ಗಾತ್ರ =(5x+2)(5x-1)(5x+3) ಘ.ಸೆಂ.ಮೀ. ಇದು (x+a)(x+b)(x+c) ರೂಪದಲ್ಲಿದೆ. x=5x , a=2, b=-1 , c=3 ಸೂತ್ರ: (x+a)(x+b)(x+c)= x3+ (a+b+c) x2+(ab+bc+ca)x+abc = (5x)3+ (2-1+3) (5x)2+(-2-3+6)(5x)+ 2*-1*3, = 125x3+ 100x2+5x-6 |
ತಾಳೆ:
xಗೆ ಒಂದು ಬೆಲೆ (=2) ಕೊಡುವಾ
ಆಗ,
1. 5x+2=5*2+2=12
2. 5x-1 =5*2-1=9
3. 5x+3 =5*2+3= 13
125x3+ 100x2+5x- 6 = 125*8+100*4+5*2-6
= 1000+400+10-6=1404
(5x+2)(5x-1)(5x+3)
=12*9*13 = 1404
ಘನಾಕೃತಿಯ ಘನಫಲ = ಉದ್ದ* ಅಗಲ*ಎತ್ತರ.
=12*9*13
= 1404 ಘ.ಸೆಂ.ಮೀ.
ಇದರಿಂದ (x+a)(x+b)(x+c)= x3+ (a+b+c) x2+(ab+bc+ca)x+abc ಎಂದು ತಿಳಿಯಬಹುದು,ಹಾಗೂ
1. (a+b+c) x2 x2 ನ ಸಹಗುಣಕ (a+b+c)
2. (ab+bc+ca)x ರಲ್ಲಿ x ನ ಸಹಗುಣಕ (ab+bc+ca) ಎಂದು ಗಮನಿಸಬಹುದು.
ಸಮಸ್ಯೆ 3: (3x-1)(3x-1)(3x+4) ರಲ್ಲಿ x2 ಮತ್ತು x ನ ಸಹಗುಣಕವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಗುಣಲಬ್ಧವು (x+a)(x+b)(x+c) ರೂಪದಲ್ಲಿದೆ. x=3x , a=-1, b=-1 , c=4
ಆದ್ದರಿಂದ ಗುಣಲಬ್ಧವನ್ನು (x+a)(x+b)(x+c) ರೂಪದಲ್ಲಿ ಬರೆಯಬಹುದು.
ಸೂತ್ರ:: (x+a)(x+b)(x+c)= x3+ (a+b+c) x2+(ab+bc+ca)x+abc
= (3x)3+(a+b+c)(3x)2 + (ab+bc+ca)(3x)+abc (x=3x ಎಂದು ಆದೇಶಿಸಿದಾಗ)
1.(a+b+c)(3x)2 ನಲ್ಲಿ x2 ನ ಸಹಗುಣಕ: (a+b+c)*9. a,b ,c ಗಳ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸಿದಾಗ,
(a+b+c)*9
= (-1-1+4)*9
= 18
2. (ab+bc+ca)(3x) ನಲ್ಲಿ x ನ ಸಹಗುಣಕ (ab+bc+ca)*3. a,b ,c ಗಳ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸಿದಾಗ,
(ab+bc+ca)*3
= (1-4-4)*3
= -21
ತಾಳೆ:
(3x-1)(3x-1)(3x+4) ನ್ನು ವಿಸ್ತರಿಸಿ ಸಹಗುಣಕಗಳನ್ನು ತಾಳೆನೋಡಿ.
ನಾವು ಈ ಹಿಂದೆ ಕಲಿತ ಸೂತ್ರ:
(a+b)3 = a3+ 3ab(a+b)+ b3
(a+b)3 -3ab(a+b) = a3+ b3(ವರ್ಗಾಯಿಸಿದೆ.)
i,e a3+ b3
=(a+b)3 -3ab(a+b)
= (a+b){ (a+b)2 -3ab}
= (a+b) { a2 +b2 +2ab -3ab}((a+b)2 ನ್ನು ವಿಸ್ತರಿಸಿದಾಗ.)
= (a+b) (a2 +b2 -ab)
‘b’ ಗೆ ಬದಲಾಗಿ (–b) ಯನ್ನು ಆದೇಶಿಸಿದಾಗ,
a3+ (-b)3 = (a+-b) (a2 +(-b)2 -a*(-b))
= (a-b) (a2 +b2 +ab)
ಆದರೆ, a3+ (-b)3= a3-b3
a3-b3= (a-b) (a2 +b2 +ab)
ಸಮಸ್ಯೆ 4: ಅಪವರ್ತಿಸಿ: 0.027 p3+0.008 q3
ಪರಿಹಾರ:
0.3*0.3*0.3=0.027 , 0.2*0.2*0.2=0.008
a3+b3=(a+b) (a2+b2-ab) ಸೂತ್ರದಲ್ಲಿ
a=0.3p , b= 0.2q
0.027 p3+0.008 q3
= (0.3p+0.2q) ((0.3p)2 +(0.2q)2 -0.3p*0.2q)
= (0.3p+0.2q) (0.09p2 +0.04q2 -0.06pq)
ತಾಳೆ:
(p ಮತ್ತು q ಗಳ ಒಂದು ಬೆಲೆಗೆ)
p=1 , q=1, ಆಗಿರಲಿ.
ಆಗ, (0.3p+0.2q) (0.09p2 +0.04q2 -0.06pq)
= 0.5*(0.09+0.04-0.06) = 0.5*0.07 = 0.035
ದತ್ತ ಬೀಜೋಕ್ತಿ: 0.027 p3+0.008 q3
=0.027+0.008 =0.035
ಎರಡೂ ವಿಧಾನಗಳಿಂದ ಫಲಿತಾಂಶ ಒಂದೇ ಇರುವುದರಿಂದ,ನಮ್ಮ ಪರಿಹಾರ ಸರಿಯಿದೆ ಎಂದು ತಿಳಿಯಬಹುದು
ಸಮಸ್ಯೆ 5: ಅಪವರ್ತಿಸಿ 125 -1/ a3b3
ಪರಿಹಾರ:
125 = 53 , 1/ a3b3=(1/ ab)3
a3-b3 ಸೂತ್ರದಲ್ಲಿ, ಇಲ್ಲಿ a=5 , b= 1/ab
a3-b3=(a-b) (a2 +b2 +ab) ಉಪಯೋಗಿಸಿ,a ಮತ್ತು b ಯ ಬೆಲೆಗಳನ್ನು ಆದೇಶಿಸಿದಾಗ,
125 -1/ a3b3
= (5 -1/ab) (52 +(1/ab)2 +5*1/ab)
= (5 -1/ab) (25 +1/a2 b2 +5/ab)
ತಾಳೆ:
(a ಮತ್ತು bಗಳ ಒಂದು ಬೆಲೆಗೆ)
a=1 ,b=2, ಆಗಿರಲಿ.
(5 -1/ab) (25 +1/a2 b2 +5/ab)
=(5-1/2)(25+1/4+5/2) =124.875(ಕ್ಯಾಲ್ಕ್ಯುಲೇಟರನ್ನು ಉಪಯೋಗಿಸಿ.)
ದತ್ತ ಬೀಜೋಕ್ತಿ: 125 -1/ a3b3
= 125-1/8= 124.875 (ಕ್ಯಾಲ್ಕ್ಯುಲೇಟರನ್ನು ಉಪಯೋಗಿಸಿ.)
ಎರಡೂ ವಿಧಾನಗಳಿಂದ ಫಲಿತಾಂಶ ಒಂದೇ ಇರುವುದರಿಂದ,ನಮ್ಮ ಪರಿಹಾರ ಸರಿಯಿದೆ ಎಂದು ತಿಳಿಯಬಹುದು.
ಸಂ. |
ಸೂತ್ರ |
ವಿಸ್ತರಣೆ |
ಅಪವರ್ತನಗಳು |
1 |
(a+b)2 |
a2+b2+2ab |
(a+b) ಮತ್ತು (a+b) |
2 |
(a-b)2 |
a2+b2-2ab |
(a-b ಮತ್ತು (a-b) |
3 |
(a+b)(a-b) |
a2-b2 |
(a+b) ಮತ್ತು (a-b) |
4 |
(x+a)*(x+b) |
x2+x(a+b)+ab |
(x+a) ಮತ್ತು (x+b) |
5 |
(x+a)(x+b)(x+c) |
x3+ (a+b+c)x2+(ab+bc+ca)x+abc |
(x+a),(x+b) ಮತ್ತು (x+c) |
6 |
(a+b)3 |
a3+b3+3ab(a+b) |
(a+b),(a+b) ಮತ್ತು (a+b) |
7 |
(a-b)3 |
a3-b3-3ab(a-b) |
(a-b),(a-b) ಮತ್ತು (a-b) |
8 |
a3+b3 |
(a+b) (a2 +b2 -ab) |
(a+b) ಮತ್ತು (a2 +b2 -ab) |
9 |
a3-b3 |
(a-b) (a2 +b2 +ab) |
(a-b) ಮತ್ತು (a2 +b2 +ab) |
ಯಾವುದೇ ಬೀಜೋಕ್ತಿಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಲು ನಾವು ಭಾಗಾಕಾರ ಕ್ರಮವನ್ನು ಅನುಸರಿಸುವುದನ್ನು ಈಗಾಗಲೇ ಪಾಠ 2.5 ರಲ್ಲಿ ಕಲಿತಿದ್ದೇವೆ
ಸಮಸ್ಯೆ 1: (p+3)3, 2p3+54+18p(p+3), (p2+6p+9) ಇವುಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಹಂತ 1: ಎಲ್ಲಾ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಮೊದಲಿಗೆ ಅಪವರ್ತಿಸಿರಿ.
1. (p+3)3 – ಇದರ ಅಪವರ್ತನಗಳು: (p+3),(p+3) ಮತ್ತು (p+3)
2. ಈಗ 2ನೇ ಪದವನ್ನು ಅಪವರ್ತಿಸುವಾ.
2p3+54+18p(p+3)
= 2(p3+27)+18p(p+3)
= 2*(p+3)( p2+9-3p)+18p(p+3), [(p3+27) ಇದು a3+b3 ರೂಪದಲ್ಲಿದೆ. a=p , b=3, a3+b3 =(a+b) (a2 +b2 -ab)]
=(p+3)*((2*(p2+9-3p))+18p)
= (p+3) *2*( p2+9-3p+9p)
=2(p+3)( p2+9+6p) [ (p2+9+6p ಇದು ( a2+ b2+2ab) ರೂಪದಲ್ಲಿದೆ. a=p , b=3, ( a2+ b2+2ab)= (a+b)2 ]
= 2(p+3)(p+3)2
2p3+54+18p(p+3) ಯ ಅಪವರ್ತನಗಳು: 2, (p+3),(p+3),(p+3)
3. (p2+6p+9) =(p+3)2 -- (ಮೇಲೆ ನೋಡಿದೆ.)
(p2+6p+9) ಈ ಬೀಜೋಕ್ತಿಯ ಅಪವರ್ತನಗಳು: (p+3)2
ಹಂತ 2: ಈಗ ಮ.ಸಾ.ಅ. ಮತ್ತು ಲ.ಸಾ.ಅ ನೋಡಲು ಭಾಗಾಕಾರ ಕ್ರಮವನ್ನು ಬಳಸಿ.
ದತ್ತ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಹೀಗೆ ಬರೆಯಬಹುದು: ( p+3)(p+3)(p+3), 2(p+3)(p+3)(p+3), (p+3)(p+3)
ಮೇಲಿನವುಗಳ ಸಾಮಾನ್ಯ ಅಪವರ್ತನ ( p+3)ಆಗಿರುವುದರಿಂದ ( p+3)ನಿಂದಲೇ ಭಾಗಾಕಾರ ಮಾಡೋಣ
(p+3) | ( p+3)(p+3)(p+3), 2(p+3)(p+3)(p+3), (p+3)(p+3)
(p+3) | (p+3)(p+3), 2(p+3)(p+3), (p+3)
(p+3), 2(p+3) 1
ಇನ್ನು ಎಲ್ಲಾವುದಕ್ಕೂಸಾಮಾನ್ಯ ಭಾಜಕಗಳು ಇಲ್ಲ. ಆದ್ದರಿಂದ ಭಾಗಾಕಾರವನ್ನು ಇಲ್ಲಿಗೇ ನಿಲ್ಲಿಸಿ.
ಆದ್ದರಿಂದ ಮ.ಸಾ.ಅ = (p+3)(p+3)= (p+3)2
ಮತ್ತು
(p+3) | ( p+3)(p+3)(p+3), 2(p+3)(p+3)(p+3), (p+3)(p+3)
(p+3) | (p+3)(p+3), 2(p+3)(p+3), (p+3)
(p+3) | (p+3), 2(p+3) 1
1, 2, 1
ಇನ್ನು ಎಲ್ಲಾವುದಕ್ಕೂ ಸಾಮಾನ್ಯ ಭಾಜಕಗಳು ಇಲ್ಲದುದರಿಂದ ಭಾಗಾಕಾರ ಇಲ್ಲಿಗೇ ಮುಗಿಯಿತು.
ಲ.ಸಾ.ಅ = (p+3)(p+3)(p+3)*1*2*1 = 2(p+3)3
ತಾಳೆ:
p=2 ಬೆಲೆ ಆದೇಶಿಸಿ ತಾಳೆನೋಡುವಾ
ಮ.ಸಾ.ಅ = (p+3)2 = (2+3)2 =25
ಲ.ಸಾ.ಅ = 2(p+3)3= 2(2+3)3= 2*125=250
ದತ್ತ ಬೀಜೋಕ್ತಿಗಳು: (p+3)3 , 2p3+54+18p(p+3), (p2+6p+9)
(2+3)3, (2*23+54+18*2(2+3)), (22+6*2+9)
= {125, 250,25}
ಇವುಗಳ ಮ.ಸಾ.ಅ =25 , ಲ.ಸಾ.ಅ =250 ಪರಿಹಾರ ಸರಿಯಾಗಿದೆ.
ಸಮಸ್ಯೆ 2: 10(x2-y2), 15(x2-2xy+y2), 20(x3- y3), 5(-3x +3y) ಗಳ ಮ.ಸಾ.ಅ ಮತ್ತು ಲ.ಸಾ.ಅ ಕಂಡುಹಿಡಿಯಿರಿ.
ಪರಿಹಾರ:
ಹಂತ 1: ಮೊತ್ತ ಮೊದಲಿಗೆ ದತ್ತ ಬೀಜೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತಿಸಬೇಕು.
1. ಮೊದಲ ಬೀಜೋಕ್ತಿ: 10(x2-y2) ಇದರಲ್ಲಿ (x2-y2) ವು (a2-b2) ರೂಪದಲ್ಲಿದೆ.
ಅದರ ಅಪವರ್ತನಗಳು: (a+b) (a-b):
10(x2-y2)=10(x+y)(x-y)
2. ಎರಡನೇ ಬೀಜೋಕ್ತಿ: 15(x2-2xy+y2)
ಇದರಲ್ಲಿ (x2-2xy+y2) ವು (a2-2ab+b2) ರೂಪದಲ್ಲಿದೆ. ಇದರ ಅಪವರ್ತನಗಳು (a-b) ಮತ್ತು (a-b)
15(x2-2xy+y2)= 15(x-y) (x-y)
3. ಮೂರನೇ ಬೀಜೋಕ್ತಿ: 20, (x3-y3): 20, (x-y), (x2 +y2 +xy)
4. ನಾಲ್ಕನೇ ಬೀಜೋಕ್ತಿ: 5*-3(x-y) = 5*(-3)(x-y)=-15, (x-y)
ಹಂತ 2: ಭಾಗಾಕಾರ ಕ್ರಮವನ್ನು ಬಳಸಿ.
ಇಲ್ಲಿ ಅಪವರ್ತನಗಳು 5 ಮತ್ತು (x-y) ಆಗಿರುವುದರಿಂದ ಇವೆರಡರಿಂದ ಜೊತೆಯಾಗಿ ಭಾಗಾಕಾರ ಮಾಡೋಣ.
5 (x-y) | 10(x+y) (x-y), 15(x-y) (x-y), 20(x-y)(x2 +y2 +xy), -15(x-y)
2(x+y), 3(x-y), 4(x2 +y2 +xy), -3
ಸಾಮಾನ್ಯ ಅಪವರ್ತನಗಳು ಇನ್ನಿಲ್ಲ.
ಮ.ಸಾ.ಅ = 5(x-y)
ಈಗ ಲ.ಸಾ.ಅ ಕಂಡು ಹಿಡಿಯಲು ಪುನ: 5(x-y) ರಿಂದ ಭಾಗಿಸಬೇಕು.
5(x-y) | 10(x+y) (x-y), 15(x-y) (x-y), 20(x-y)(x2 +y2 +xy), -15(x-y)
2| 2(x+y), 3(x-y), 4(x2 +y2 +xy), -3 (ಸಾಮಾನ್ಯ ಪದಗಳು ಇರುವರೆಗೂ ನಾವು ಭಾಗಾಕಾರ ಮಾಡೋಣ.)
3| (x+y), 3(x-y), 2(x2 +y2 +xy), -3
(x+y), (x-y), 2(x2 +y2 +xy) -1
ಲ.ಸಾ.ಅ =5(x-y)* 2*3*(x+y)*(x-y)*2(x2 +y2 +xy)
= 60*(x-y)(x+y)*(x-y)(x2 +y2 +xy) ( (x-y)(x2 +y2 +xy) ವು (a-b)( (a2 +b2 +ab) ರೂಪದಲ್ಲಿದೆ ಮತ್ತು a=x and b= y)
= 60*(x2-y2)* (x3-y3)
ತಾಳೆ:
x=3 , y=2 ಬೆಲೆ ಆದೇಶಿಸಿ ತಾಳೆನೋಡುವಾ
ಮ.ಸಾ.ಅ = 5(x-y) = 5*(3-2) = 5
ಲ.ಸಾ.ಅ = 60*(x2- y2)* (x3-y3)
= 60*(9-4)*)(27-8)
=60*5*19=5700
ಈಗ ಬೀಜೋಕ್ತಿಗಳು:
10(x2-y2), 15(x2-2xy+y2) 20(x3- y3),5(-3x +3y)
10(32-22), 15(32-2*3*2+22), 20(33- 23),5(-3*3 +3*2)
= {50, 15, 380, -15}
ಈ ಪದಗಳ ಮ.ಸಾ.ಅ =5
ಲ.ಸಾ.ಅ ಕಂಡು ಹಿಡಿಯಲು ಭಾಗಾಕಾರ ಮಾಡುವಾ.
5 | 50,15,380,-15
2 | 10,3,76,-3
3 | 5,3,38,-3
| 5,1,38,-1
ಲ.ಸಾ.ಅ = 5*2*3*5*38=5700 ಪರಿಹಾರ ಕಾರ್ಯ ಸರಿಯಾಗಿದೆ.
ಸಮಸ್ಯೆ 3 : ಯಾವ a ಮತ್ತು b ಬೆಲೆಗಳಿಗೆ ಕೆಳಗಿನ ಬೀಜೋಕ್ತಿಗಳಲ್ಲಿ
p(x) = (x2+3x+2) (x2+2x+a), q(x) = (x2+7x+12) (x2+7x+b)
(x+1)(x+3) ಅವುಗಳ ಮ.ಸಾ.ಅ ಆಗಿರುತ್ತದೆ.
ಪರಿಹಾರ:
(x2+3x+2) = (x+1)(x+2)
(x2+7x+12) = (x+4)(x+3)
p(x) = (x+1)(x+2)(x2+2x+a)
q(x) = (x+4)(x+3) (x2+7x+b)
ದತ್ತದಂತೆ (x+1)(x+3) p(x), ನ ಮ.ಸಾ.ಅ ಆಗಿರುವುದರಿಂದ
(x2+2x+a) ರ ಅಪವರ್ತನ (x+3) ಇರಲೇ ಬೇಕು
I.e. x=-3 ಎಂದು ಆದೇಶಿಸಿದಾಗ ಸಮೀಕರಣ (x2+2x+a) =0 ಆಗಲೇ ಬೇಕು
(-3)2+2(-3)+a =0
I.e. 9-6+a =0
a =-3
ದತ್ತದಂತೆ (x+1)(x+3) ರ ಮ.ಸಾ.ಅ q(x), ಆಗಿರುವುದರಿಂದ
(x2+7x+b) ರ ಅಪವರ್ತನ (x+1)
I.e. x=-1 ಎಂದು ಆದೇಶಿಸಿದಾಗ ಸಮೀಕರಣ (x2+7x+b) =0 ಆಗಲೇ ಬೇಕು
(-1)2+7(-1)+b =0
I.e. 1-7+b =0
b =6
ತಾಳೆ:
a ಮತ್ತು b ಯ ಬೆಲೆಗಳನ್ನು p(x) ಮತ್ತು q(x) ದಲ್ಲಿ ಆದೇಶಿಸಿದಾಗ,
p(x) = (x2+3x+2) (x2+2x-3) = (x+1) (x+2) (x+3) (x-1) { (x2+2x-3) = (x+3)(x-1)}
q(x) =(x2+7x+12) (x2+7x+6) = (x+4) (x+3) (x+1) (x+6) { (x2+7x+6)= (x+1)(x+6)}
p(x) ಮತ್ತು q(x) ರ ಅಪವರ್ತನಗಳನ್ನು ನೋಡಿದಾಗ p(x) ) ) ಮತ್ತು q(x) ರ ಮ.ಸಾ.ಅ (x+1) (x+3) ಆಗಿದೆ ಎಂದು ತಿಳಿಯಬಹುದು.
ಯಾವುದೇ ಸಂಖ್ಯೆಗೆ: ಭಾಜ್ಯ = (ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ.
ಈ ಮೇಲಿನ ಸಂಬಂಧ ಬಹುಪದಗಳಿಗೂ ಅನ್ವಯಿಸುತ್ತದೆ.
ಸಮಸ್ಯೆ 1: 12m3 ನ್ನು 4 m2 n ನಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
ಹಂತ 1: 12m3 n5 / 4 m2 n = (12/4)* (m3 n5 /m2 n)
ಹಂತ 2: 12/4 = 3,
ಹಂತ 3:
m3 n5/ m2 n = m3-2 n5-1 = m n4
12m3 n5 /4 m2 n = 3 m n4
ತಾಳೆ:
(ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ = 4 m2 n*3 m n4 +0 =12 m2+1 n1+4 =12m3 n5 - ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 2 : 57x2y2z2 ನ್ನು 19xyz ನಿಂದ ಭಾಗಿಸಿ.
ಹಂತ 1 :
57x2y2z2 /19xyz = (57/19) * (x2y2z2)/xyz
ಹಂತ 2:
57/19 =3
ಹಂತ 3:
x2y2z2/xyz = x2-1y2-1z2-1 = xyz
57x2y2z2 /19xyz = (57/19) * (x2y2z2)/xyz =3xyz
ತಾಳೆ:
(ಭಾಗಲಬ್ಧ*ಭಾಜಕ) + ಶೇಷ = (3xyz * 19xyz) +0 = (3*19)*xyz*xyz +0= 57x1+1y1+1z1+1+0=57x2y2z2 - ಭಾಜ್ಯ
ಈ ಮೇಲಿನ ಸಮಸ್ಯೆಯಲ್ಲಿ ಗಮನಿಸಬೇಕಾದ ಅಂಶಗಳು:
3 ಎನ್ನುವುದು 57/19 ಅಂದರೆ ಏಕ ಪದಗಳ ಸಹಗುಣಕಗಳ ಭಾಗಲಬ್ಧ.
ಅದೇರೀತಿ xyz ಎಂಬುದು ಚರಾಕ್ಷರಗಳ ಭಾಗಲಬ್ಧ..
ಭಾಗಲಬ್ಧವು ಎರಡು ಭಾಗಗಳನ್ನು ಹೊಂದಿದೆ - ಸಂಖ್ಯಾ ಸಹಗುಣಕ ಮತ್ತು ಚರಾಕ್ಷರಗಳು. ಇದನ್ನು ಪಡೆಯುವುದು ಹೇಗೆ?
1. ಎರಡು ಏಕಪದಗಳ ಭಾಗಲಬ್ಧದ ಸಹಗುಣಕವು ಆ ಎರಡು ಏಕಪದಗಳ ಸಂಖ್ಯಾ ಸಹಗುಣಕಗಳ ಭಾಗಲಬ್ಧಕ್ಕೆ ಸಮ.
2. ಎರಡು ಏಕಪದಗಳ ಭಾಗಲಬ್ಧದ ಚರಾಕ್ಷರ ಭಾಗವು ಆ ಎರಡು ಏಕಪದಗಳ ಚರಾಕ್ಷರಗಳ ಭಾಗಲಬ್ಧವೇ ಆಗಿರುತ್ತದೆ.
ಬಹುಪದವನ್ನು ಏಕಪದದಿಂದ ಭಾಗಿಸುವುದು (Division of a Polynomial by a Monomial):
ಸಮಸ್ಯೆ 1: 4023m2n2-6032m2n -8042m3 ಈ ಬೀಜೋಕ್ತಿಯನ್ನು (-2012m2) ದಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
4023= (2x201)3= (2)3x(201)3, 6032 = (3x201)2 = (3)2x(201)2, 8042 = (4x201)2 = (4)2x(201)2
[4023m2n2-6032m2n -8042m3 n4]/(-2012m2)
=[(2)3*(201)3 m2n2-(3)2*(201)2 m2n -(4)2*(201)2m3 n4]/(-2012m2)
= -[ (2)3*(201) n2-(3)2* n -(4)2*m1 n4] = - (8*201* n2-9n -16mn4)
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = (-2012m2)*[-(8*201* n2+9n +16mn4)]+0
= +(2012m2)*(8*201* n2 -2012m2*9n -2012m2*16mn4) +0
= 8*2013m2 n2 -9*2012m2+2n-16*2012m2+1n4)
= 23* 2013m2 n2 - 32 *2012m4n-42*2012 m3 n4
= (2*201)3m2n2-(3*201)2 m2n –(4*201)2 m3 n4
= 4023 m2n2 - 6032 m2n - 8042 m3 n4
= ಭಾಜ್ಯ.
ಸಮಸ್ಯೆ 2 : 2a4 b3+ 8a2 b2 ವನ್ನು 2ab ಯಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
(2a4 b3+ 8a2 b2)/2ab = (2a4 b3/2ab) + (8a2 b2 / 2ab) = a3 b2 +4a b
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = 2ab*(a3 b2 +4a b) +0= 2a4 b3+ 8a2 b2 = ಭಾಜ್ಯ
1. ಬಹುಪದದ ಪ್ರತೀ ಪದವನ್ನು ಏಕಪದದಿಂದ ಭಾಗಿಸಿ.
2. ಈ ರೀತಿ ಪಡೆದ ಭಾಗಲಬ್ಧಗಳನ್ನು ಒಟ್ಟಿಗೆ ಸೇರಿಸಿ.(ಸೂಕ್ತ ಚಿಹ್ನೆಯಿಂದ).
1:ಮೊತ್ತ ಮೊದಲಿಗೆ 7+x3-6x (ತ್ರಿಪದ)ವನ್ನ ಒಂದು ದ್ವಿಪದ x+1 ರಿಂದ ಭಾಗಿಸುವಾ.
ಪರಿಹಾರ:
ಭಾಜ್ಯವು 3ನೇ ಘಾತದ ಬೀಜೋಕ್ತಿ, ಭಾಜಕವು 1ನೇ ಘಾತದ ದ್ವಿಪದ.
ಹಂತ |
ವಿಧಾನ |
|
1 |
ಭಾಜ್ಯ ಮತ್ತು ಭಾಜಕಗಳನ್ನು ಅವುಗಳ ಘಾತ ಸೂಚಿಯ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿ ಬರೆಯಿರಿ. |
|
2 |
ಯಾವುದೇ ಘಾತದ ಬೀಜ ಪದ ಇಲ್ಲದಿದ್ದರೆ ಸಹಗುಣಕ ‘0’ ಹಾಕಿ, ಬರೆಯಿರಿ x3 -6x+7 ನ್ನು (x3 +0x2-6x+7) ಎಂದು ಬರೆಯಿರಿ. |
|
3 |
ಭಾಜ್ಯದ ಮೊದಲ ಪದವನ್ನು ಭಾಜಕದ ಮೊದಲ ಪದದಿಂದ ಭಾಗಿಸಿ ( x3/x = x2). ಆದ್ದರಿಂದ x2 ವು ಭಾಗಲಬ್ಧ ಮೊದಲನೇ ಪದ ಇದನ್ನು ಮೇಲ್ತುದಿಯಲ್ಲಿ ಬರೆಯಿರಿ. |
|
4 |
ಭಾಜಕವನ್ನು ಭಾಗಲಬ್ಧ ಮೊದಲ ಪದ (x2) ರಿಂದ ಗುಣಿಸಿ, ಭಾಜ್ಯದ ಕೆಳಗೆ ಬರೆಯಿರಿ (=x3+ x2) |
|
5 |
ಹಂತ 4 ರಲ್ಲಿ ಬಂದ ಉತ್ತರವನ್ನು ಭಾಜ್ಯದಿಂದ ಕಳೆಯಿರಿ.( x3 +0x2 ) – (x3+ x2) = - x2 |
|
6 |
ಭಾಜ್ಯದ ಮುಂದಿನ ಪದವನ್ನು ತೆಗೆದುಕೊಂಡು,(=-6x) ಹಂತ 5ರ ಉತ್ತರದ ಮುಂದೆ ಬರೆಯಿರಿ. ಆಗ -x2 – 6x. ಇದು ಹೊಸ ಭಾಜ್ಯ. |
|
7 |
ಹಂತ 3 ರಿಂದ 6 ರವರೆಗಿನದ್ದನ್ನು ಪುನರಾವರ್ತಿಸಿ, ಭಾಗಾಕಾರವನ್ನು ಮುಂದುವರಿಸಿ |
|
8 |
ಶೇಷದ ಘಾತ ಸೂಚಿಯು ಭಾಜಕದ ಘಾತ ಸೂಚಿಗಿಂತ ಕಡಿಮೆಯಾದಾಗ ಭಾಗಾಕಾರ ಕ್ರಿಯೆ ನಿಲ್ಲಿಸಿ. |
ತಾಳೆ:
ಭಾಜಕ* ಭಾಗಲಬ್ಧ + ಶೇಷ = (x+1)* (x2-x-5)+12
= x*(x2-x-5) +1*(x2-x-5)+12
= (x3-x2-5x)+ (x2-x-5)+12 = x3-x2+ x2-5x-x -5+12
= x3-0x2-6x +7
= x3-6x +7 – ಇದು ದತ್ತ ಭಾಜ್ಯ.
ಸಮಸ್ಯೆ 2: x5 -9x2 +12x-14 ದಿಂದ x -3 ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
ಭಾಜ್ಯವು ಘಾತಾಂಶದ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿಯೇ ಇದೆ. ಆದರೆ ಬಹುಪದದಲ್ಲಿ ಇಲ್ಲದ x ನ ಘಾತಾಂಕಗಳನ್ನು ಸೊನ್ನೆ ಸಹಗುಣಕ ಸೇರಿಸಿ ಬರೆಯಬೇಕು.
xಭಾಜ್ಯ: x5 +0x4 +0x3-9x2 +12x-14.
ಭಾಜಕವು ಘಾತಾಂಕದ ಇಳಿಕೆಯ ಕ್ರಮದಲ್ಲಿಯೇ ಇದೆ.
- | x5 -3x4
- |3x4 +0x3
- |3x4 -9x3
- |9x3 -9x2
- |9x3 -27x2
- |18x2+12x
- |18x2 -54x
-|66x-14
-|66x-198
184
ತಾಳೆ:
ಭಾಗಲಬ್ಧವನ್ನು ಭಾಜ್ಯದಿಂದ ಗುಣಿಸಿ, ಶೇಷವನ್ನು ಕೂಡಿಸಿ ತಾಳೆ ನೋಡಬಹುದು. ಆದರೆ ಬೀಜೋಕ್ತಿಯು ತುಂಬಾ ದೊಡ್ಡದಿರುವುದರಿಂದ, ತಾಳೆ ನೋಡಲು ಬೇರೆ ವಿಧಾನ ಬಳಸುವಾ.
x=2 ಆದಾಗ ಫಲಿತಾಂಶವನ್ನು ನೋಡುವಾ.
x=2 ಆದಾಗ,
ಭಾಜಕ =x5 -9x2 +12x-14 = 25 -9*22 +12*2-14
= 32-36+24-14
= 6
ಭಾಜಕ = x-3 =2-3 = -1
ಭಾಗಲಬ್ಧ =
= 24 +3*23 +9*22+18*2+66
= 16+24+36+66=178
ಈಗ,
ಭಾಗಲಬ್ಧ*ಭಾಜಕ + ಶೇಷ = 178*-1+184
= -178+184
= 6 - ದತ್ತ ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 3: (6p3 -19p2 -8p) ಯನ್ನು (p2 -4p+2) ರಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
6p+5
p2 -4p+2
( -) |6p3 -24p2 +12p --à ---- (1) {= 6p*(p2 -4p+2)}
(=) |+5 p2 -20p --à -----(2) {ಸಮೀಕರಣ (1) ನ್ನು ಭಾಜ್ಯದಿಂದ ಕಳೆಯಿರಿ}
( -) | 5p2 - 20p+10 --à -----(3) {= 5*(p2 -4p+2)}
(=) -10 --à ಶೇಷ {ಸಮೀಕರಣ (3) ರಿಂದ (2)ನ್ನು ಕಳೆಯಿರಿ. }
ತಾಳೆ:
ಭಾಗಲಬ್ಧ*ಭಾಜಕ = (6p+5)* (p2 -4p+2)
= 6p* p2 +6p*-4p+6p*2+5* p2+5*-4p+5*2
= 6p3 -24p2+12p+5p2-20p+10
= 6p3 -19p2-8p+10
ಭಾಗಲಬ್ಧ*ಭಾಜಕ + ಶೇಷ = (6p3 -19p2-8p+10)-10
= 6p3 -19p2-8p - ದತ್ತ ಭಾಜ್ಯ
ಸಮಸ್ಯೆ 4: a5 +b5 ನ್ನು (a+b) ಯಿಂದ ಭಾಗಿಸಿ.
ಪರಿಹಾರ:
a+b
(-) |a5+ a4b
(=) - a4b+0
(-) |a4b-a3b2
(=) a3b2+0
(-) | a3b2+ a2b3
(=) - a2b3+0
(-) |-a2b3-ab4
(=) ab4 + b5
(-) |ab4 + b5
(=) 0
ಅಭ್ಯಾಸ: ಭಾಜಕ*ಭಾಗಲಬ್ಧ+ಶೇಷ = ಭಾಜ್ಯ ಆಗುವುದೋ ಎಂದು ನೋಡಿ.
ಮೂಲ : ಫ್ರೀ ಗಣಿತ
ಕೊನೆಯ ಮಾರ್ಪಾಟು : 1/7/2020